【題目】以下是一位同學所做的有理數運算解題過程的一部分:
![]()
(1)請你在上面的解題過程中仿照給出的方式,圈畫出他的錯誤之處,并將正確結果寫在相應的圈內;
(2)請就此題反映出的該同學有理數運算掌握的情況進行具體評價,并對相應的有效避錯方法給出你的建議。
科目:初中數學 來源: 題型:
【題目】1+3=22
1+3+5=32
1+3+5+7=42
1+3+5+7+9=52
……
(1)按照此規律,寫出第5個等式;
(2)按照此規律,寫出第
(
為正整數)個等式;
(3)利用(2)中寫出的等式,求101+103+105+……+295+297+299的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在AB上,點E在AC上,BE、CD相交于點O.
(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數;
(2)試猜想∠BOC與∠A+∠B+∠C之間的關系,并證明你猜想的正確性.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸的單位長度為1.
![]()
(1)如果點A,D表示的數互為相反數,那么點B表示的數是多少?
(2)如果點B,D表示的數互為相反數,那么圖中表示的四個點中,哪一點表示的數的絕對值最大?為什么?
(3)當點B為原點時,若存在一點M到A的距離是點M到D的距離的2倍,則點M所表示的數是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在兩條垂直相交的道路上,一輛自行車和一輛摩托車相遇后又分別向北向東駛去,若自行車與摩托車每秒分別行駛
米、
米,則
秒后兩車相距( )米.
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,點 E、F分別為邊 AD、CD上的動點(都與菱形的頂點不重合),聯結 EF、BE、BF .
(1)若∠A=60°,且 AE+CF=AB,判斷△BEF 的形狀,并說明理由;
(2)在(1)的條件下,設菱形的邊長為a,求△BEF面積的最小值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、B、C分別是⊙O上的點,∠B=60°,P是直徑CD的延長線上的一點,且AP=AC.
(1)求證:AP與⊙O相切;
(2)如果PD=
,求AP的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎規則如下:①如圖,是一個材質均勻可自由轉動的轉盤,轉盤被等分成五個扇形區域,每個區域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉動”(當轉動轉盤,轉盤停止后,可獲得指針所指區域的字樣,我們稱這次轉動為一次“有效隨機轉動”);③假設顧客轉動轉盤,轉盤停止后,指針指向兩區域的邊界,顧客可以再轉動轉盤,直到轉動為一次“有效隨機轉動”;④當顧客完成一次抽獎活動后,記下兩次指針所指區域的兩個字,只要這兩個字和獎品名稱的兩個字相同(與字的順序無關),便可獲得相應獎品一瓶;不相同時,不能獲得任何獎品.
根據以上規則,回答下列問題:
![]()
(1)求一次“有效隨機轉動”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或樹狀圖等方法,求該顧客經過兩次“有效隨機轉動”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現有一動點P從A出發以2cm/秒的速度,沿矩形的邊A—B—C—D回到點A,設點P的運動時間為t秒,
(1)當t=3秒時,求BP的長;
(2)當t為何值時,連接BP,AP,△ABP的面積為長方形的面積三分之一?
(3)Q為AD邊上的點,且DQ=5,當t為何值時,以長方形的兩個頂點及點P為頂點的三角形與△DCQ全等?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com