【題目】解方程:
(1)x2﹣4x﹣3=0;
(2)(2x+1)2=(2﹣x)2.
【答案】(1) x1=2+
,x2=2﹣
;(2) x1=﹣3,x2=![]()
【解析】(1)利用公式法解一元二次方程即可;
(2)先移項(xiàng),然后利用平方差公式對(duì)等式的左邊進(jìn)行因式分解,再求解即可.
配方法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確應(yīng)用,把左邊配成完全平方式,右邊化為常數(shù);
(1)x2﹣4x﹣3=0,
∵a=1,b=﹣4,c=﹣3,
∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣3)=28,
∴x=
=2±
.
則x1=2+
,x2=2﹣
;
(2)(2x+1)2=(2﹣x)2,
(2x+1+2﹣x)(2x+1﹣2+x)=0,
(x+3)(3x﹣1)=0,
則x1=﹣3,x2=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)A《最強(qiáng)大腦》、B《朗讀者》、C《中國(guó)詩(shī)詞大會(huì)》、D《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了一些學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名同學(xué)選出并且只能選出一個(gè)自己喜歡的節(jié)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖1和圖2):
![]()
根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生人數(shù)為 人,圖2中,n= ;
(2)扇形統(tǒng)計(jì)圖中,喜愛(ài)《中國(guó)詩(shī)詞大會(huì)》節(jié)目所對(duì)應(yīng)扇形的圓心角是 度;
(3)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(4)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校6000名學(xué)生中有多少學(xué)生喜愛(ài)《最強(qiáng)大腦》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形
擺放在平面直角坐標(biāo)系中,點(diǎn)
在
軸上,點(diǎn)
在
軸上,
,
,過(guò)點(diǎn)
的直線交矩形
的邊
于點(diǎn)
,且點(diǎn)
不與點(diǎn)
、
重合,過(guò)點(diǎn)
作
,
交
軸于點(diǎn)
,交
軸于點(diǎn)
.
(1)若
為等腰直角三角形.
①求直線
的函數(shù)解析式;
②在
軸上另有一點(diǎn)
的坐標(biāo)為
,請(qǐng)?jiān)谥本
和
軸上分別找一點(diǎn)
、
,使
的周長(zhǎng)最小,并求出此時(shí)點(diǎn)
的坐標(biāo)和
周長(zhǎng)的最小值.
(2)如圖2,過(guò)點(diǎn)
作
交
軸于點(diǎn)
,若以
、
、
、
為頂點(diǎn)的四邊形是平行四邊形,求直線
的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有兩定點(diǎn)A、B,點(diǎn)
表示的數(shù)為6,點(diǎn)B在點(diǎn)A的左側(cè),且AB=20,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
![]()
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù)______,點(diǎn)P表示的數(shù)用含t的式子表示:_______;
(2)設(shè)點(diǎn)M是AP的中點(diǎn),點(diǎn)N是PB的中點(diǎn).點(diǎn)P在直線AB上運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不變化,求出線段MN的長(zhǎng)度.
(3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā);當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)?與點(diǎn)R的距離為2個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角板中的兩個(gè)直角頂點(diǎn)重合在一起,即按如圖所示的方式疊放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度數(shù).
(2)若∠ACE=150°,求∠BCD的度數(shù).
(3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:若關(guān)于
的一元一次方程
的解為
,則稱(chēng)該方程為“和解方程”.例如:方程
的解為
,而
, 則方程
為“和解方程".請(qǐng)根據(jù)上述規(guī)定解答下列問(wèn)題:(1)已知關(guān)于
的一元一次方程
是“和解方程”,則
的值為________.(2)己知關(guān)于
的一元一次方程
是“和解方程”,并且它的解是
,則
的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=
,x1x2=
.
材料2、已知實(shí)數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求
的值.
解:由題知m、n是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1得
m+n=1,mn=﹣1
∴
根據(jù)上述材料解決下面問(wèn)題;
(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2= ,x1x2= .
(2)已知實(shí)數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.
(3)已知實(shí)數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有一拋物線其表達(dá)式為
.
(1)當(dāng)該拋物線過(guò)原點(diǎn)時(shí),求
的值;
(2)坐標(biāo)系內(nèi)有一矩形OABC,其中
、
.
①直接寫(xiě)出C點(diǎn)坐標(biāo);
②如果拋物線
與該矩形有2個(gè)交點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+bx+c的對(duì)稱(chēng)軸為直線x=1,該拋物線與x軸的兩個(gè)交點(diǎn)分別為A和B,與y軸的交點(diǎn)為C,其中A(-1,0).
![]()
(1)寫(xiě)出B點(diǎn)的坐標(biāo) ;
(2)求拋物線的函數(shù)解析式;
(3)若拋物線上存在一點(diǎn)P,使得△POC的面積是△BOC的面積的2倍,求點(diǎn)P的坐標(biāo);
(4)點(diǎn)M是線段BC上一點(diǎn),過(guò)點(diǎn)M作x軸的垂線交拋物線于點(diǎn)D,求線段MD長(zhǎng)度的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com