【題目】某養殖戶的養殖成本逐年增長,已知第一年的養殖成本為12萬元,第3年的養殖成本為17萬元.設每年平均增長的百分率為x,則下面所列方程中正確的是( )
A.12(1﹣x)2=17
B.17(1﹣x)2=12
C.17(1+x)2=12
D.12(1+x)2=17
科目:初中數學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=
,AE⊥BD,垂足是E.點F是點E關于AB的對稱點,連接AF、BF.
![]()
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值.
(3)如圖②,將△ABF繞點B順時針旋轉一個角α(0°<α<180°),記旋轉中的△ABF為△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把拋物線y=-x2+2的圖象繞原點旋轉180°,所得的拋物線的函數關系是( )
A. y=x2+2B. y=-x2+2C. y=-x2-2D. y=x2-2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農場去年種植了10畝地的南瓜,畝產量為2000kg,根據市場需要,今年該農場擴大了種植面積,并且全部種植了高產的新品種南瓜,已知南瓜種植面積的增長率是畝產量的增長率的2倍,今年南瓜的總產量為60000kg,求南瓜畝產量的增長率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法解方程x2﹣2x﹣2=0,原方程應變形為( )
A. (x+1)2=3B. (x﹣1)2=3C. (x+1)2=1D. (x﹣1)2=1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:
![]()
![]()
說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下
(1)樣本中D級的學生人數占全班學生人數的百分比是 ;
(2)扇形統計圖中A級所在的扇形的圓心角度數是 ;
(3)請把條形統計圖補充完整;
(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,點E、F分別是AD、BC的中點,分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為直角,AB=10,
°,半徑為1的動圓Q的圓心從點C出發,沿著CB方向以1個單位長度/秒的速度勻速運動,同時動點P從點B出發,沿著BA方向也以1個單位長度/秒的速度勻速運動,設運動時間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙P與AB、BC的另一個交點分別為E、D,連結ED、EQ.
(1)判斷并證明ED與BC的位置關系,并求當點Q與點D重合時t的值;
(2)當⊙P和AC相交時,設CQ為
,⊙P被AC 截得的弦長為
,求
關于
的函數; 并求當⊙Q過點B時⊙P被AC截得的弦長;
(3)若⊙P與⊙Q相交,寫出t的取值范圍.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com