【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生期末考試數(shù)學(xué)成績(單位:分)的頻率分布直方圖如圖所示,其中數(shù)據(jù)不在分點(diǎn)上,對(duì)圖中提供的信息作出如下的判斷:![]()
②成績在79.5~89.5分段的人數(shù)占30%;
③成績在79.5分以上的學(xué)生有20人;
④本次考試成績的中位數(shù)落在69.5~79.5分段內(nèi).
其中正確的判斷有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子:①﹣2<0;②2x﹣3y<0;③x=3;④x+y.其中不等式的個(gè)數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在
中,
是
的中點(diǎn),點(diǎn)
在
上,點(diǎn)
在
上,且
.![]()
(1)求證:
.
(2)若
=2,求四邊形
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點(diǎn)C′落在BC的延長線上時(shí),線段OA′交BC于點(diǎn)E,則線段C′E的長度為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)
分別在正方形
的邊
上,
,連接
,則
,試說明理由.![]()
(1)思路梳理
因?yàn)?
,所以把
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)90°至
,可使
與
重合.因?yàn)?
,所以
,點(diǎn)
共線.
根據(jù) , 易證
, 得
.請(qǐng)證明.
(2)類比引申
如圖②,四邊形
中,
,
,點(diǎn)
分別在邊
上,
.若
都不是直角,則當(dāng)
與
滿足等量關(guān)系時(shí),
仍然成立,請(qǐng)證明.![]()
(3)聯(lián)想拓展
如圖③,在
中,
,點(diǎn)
均在邊
上,且
.猜想
應(yīng)滿足的等量關(guān)系,并寫出證明過程.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)有理數(shù)a,b,如果ab<0,a+b<0,那么( )
A. a>0,b<0B. a<0,b>0
C. a,b異號(hào)D. a,b異號(hào)且負(fù)數(shù)的絕對(duì)值較大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)對(duì)運(yùn)動(dòng)員進(jìn)行3分球投籃成績測試,每人每天投3分球10次,對(duì)甲、乙兩名隊(duì)員在五天中進(jìn)球的個(gè)數(shù)統(tǒng)計(jì)結(jié)果如下:![]()
經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)現(xiàn)在需要根據(jù)以上結(jié)果,從甲、乙兩名隊(duì)員中選出一人去參加3分球投籃大賽,你認(rèn)為應(yīng)該選哪名隊(duì)員去?為什么?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com