【題目】如圖,已知第一象限的點A在反比例函數y=
上,過點A作AB⊥AO交x軸于點B,∠AOB=30°,將△AOB繞點O逆時針旋轉120°,點B的對應點B恰好落在反比例函數y=
上,則k的值為( )
![]()
A.﹣4
B.﹣
C.﹣2
D.﹣![]()
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角標系中,拋物線C:y=
與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,點D為y軸正半軸上一點.且滿足OD=
OC,連接BD,
(1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN=2且點N位于M點下方,連接DN,求DN+MN+
AM的最小值
(2)如圖2,在第(1)問的條件下,點C關于x軸的對稱點為E,將△BOE繞著點A逆時針旋轉60°得到△B′O′E′,將拋物線y=
沿著射線PA方向平移,使得平移后的拋物線C′經過點E,此時拋物線C′與x軸的右交點記為點F,連接E′F,B′F,R為線段E’F上的一點,連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內找一個點S,使得以B′、R、T、S為頂點的四邊形為矩形,求點S的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD為正方形,∠CAB的角平分線交BC于點E,過點C作CF⊥AE交AE的延長線于點G,CF與AB的延長線交于點F,連接BG、DG、與AC相交于點H,則下列結論:①
ABE![]()
CBF;②GF=CG;③BG⊥DG;④
,其中正確的是______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD//CO.
![]()
(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=
,求AD的長.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術節.為了弘揚中華優秀傳統文化,每屆藝術節上都有一些班級表演“經典誦讀”、“民樂演奏”、“歌曲聯唱”、“民族舞蹈”等節目.小穎對每屆藝術節表演這些節目的班級數進行統計,并繪制了如圖所示不完整的折線統計圖和扇形統計圖.
![]()
![]()
(1)五屆藝術節共有________個班級表演這些節日,班數的中位數為________,在扇形統計圖中,第四屆班級數的扇形圓心角的度數為________;
(2)補全折線統計圖;
(3)第六屆藝術節,某班決定從這四項藝術形式中任選兩項表演(“經典誦讀”、“民樂演奏”、“歌曲聯唱”、“民族舞蹈”分別用
,
,
,
表示).利用樹狀圖或表格求出該班選擇
和
兩項的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作發現:如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個三角形放置在一起,使點B,D,E在同一直線上,連接CE.
![]()
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數;
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請直接寫出EF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】攀枝花得天獨厚,氣候宜人,農產品資源極為豐富,其中晚熟芒果遠銷北上廣等大城市.某水果店購進一批優質晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/每千克,根據銷售情況,發現該芒果在一天內的銷售量
(千克)與該天的售價
(元/千克)之間的數量滿足如下表所示的一次函數關系.
銷售量 | … | 32.5 | 35 | 35.5 | 38 | … |
售價 | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價為28元/千克.求當天該芒果的銷售量
(2)設某天銷售這種芒果獲利
元,寫出
與售價
之間的函數關系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx﹣3a經過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
![]()
(1)求此二次函數解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
![]()
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數;
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com