【題目】計算。
(1)解方程:y2﹣7y+10=0
(2)計算:(
)﹣2﹣|﹣1+
|+2sin60°+(1﹣
)0 .
【答案】
(1)解:∵(y﹣2)(y﹣5)=0,
∴y﹣2=0或y﹣5=0,
解得:y=2或y=5
(2)解:原式=4﹣(
﹣1)+2×
+1
=4﹣
+1+
+1
=6.
【解析】(1)因式分解法求解可得;(2)根據實數的混合運算順序和法則計算可得.
【考點精析】本題主要考查了零指數冪法則和整數指數冪的運算性質的相關知識點,需要掌握零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);aman=am+n(m、n是正整數);(am)n=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數)才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,B、C、D在同一直線上,△ABC和△DCE都是等邊三角形,且在直線BD的同側,BE交AD于F,BE交AC于M,AD交CE于N.![]()
(1)求證:AD=BE;
(2)求證:△ABF∽△ADB。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上. ![]()
(1)在方格紙中畫出以AB為一邊的直角△ABC,點C在小正方形的頂點上,且△ABC的面積為3.
(2)在方格紙中將△ABC繞點C逆時針旋轉90°,畫出旋轉后△DEC(點A與點D對應,點B與點E對應),請直接寫出點A繞著點C旋轉的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結論:①abc<0;②
;③ac﹣b+1=0;④OAOB=﹣
.其中正確結論的序號是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y1=﹣x+4的圖象與函數y2=
(x>0)的圖象交于A(m,1),B(1,n)兩點. ![]()
(1)求k,m,n的值;
(2)利用圖象寫出當x≥1時,y1和y2的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點,與y軸交于點C(0,﹣3).[圖2、圖3為解答備用圖]![]()
(1)k= , 點A的坐標為 , 點B的坐標為;
(2)設拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求點Q,使△BCQ是以BC為直角邊的直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y=
和y=
的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結論:
①
=
;
②陰影部分面積是
(k1+k2);
③當∠AOC=90°時,|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關于x軸對稱,也關于y軸對稱.![]()
其中正確的結論是(把所有正確的結論的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).![]()
已知:如圖, .
求證: .
(2)證明命題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com