【題目】小明同學在查閱大數學家高斯的資料時,知道了高斯如何求1+2+3+…+100.小明于是對從1開始連續奇數的和進行了研究,發現如下式子:
第1個等式:
;第2個等式:
;第3個等式: ![]()
探索以上等式的規律,解決下列問題:
(1) ![]()
;
(2)完成第
個等式的填空:
;
(3)利用上述結論,計算51+53+55+…+109 .
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自行車廠某周計劃生產2100輛電動車,平均每天生產電動車300輛.由于各種原因,實際每天的生產量與計劃每天的生產量相比有出入,下表是該周的實際生產情況(超產記為正、減產記為負,單位:輛):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
減增 |
|
|
|
|
|
|
|
(1)該廠星期一生產電動車________輛;
(2)生產量最多的一天比生產量最少的一天多生產電動車________輛;
(3)該廠實行記件工資制,每生產一輛車可得60元,那么該廠工人這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了更好保障居民飲用水安全,環保局決定購10臺污水處理設備,現有A、B兩種型號的設備,價格與每臺日處理污水的能力見下表.
![]()
(1)若縣環保局購買污水處理設備的資金不超過105萬元,你認為有哪幾種方案.
(2)在(1)的條件下,每日要求處理污水量不低于2040噸,為了節約資金,請設計“一個最省錢”的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列兩個等式:2
=2×
+1,5
=5×
+1,給出定義如下:我們稱使等式ab=ab+1的成立的一對有理數a,b為“共生有理數對”,記為(a,b),如:數對(2,
),(5,
),都是“共生有理數對”.
(1)判斷數對(2,1),(3,
)是不是“共生有理數對”,寫出過程;
(2)若(a,3)是“共生有理數對”,求a的值;
(3)若(m,n)是“共生有理數對”,則(n,m)“共生有理數對”(填“是”或“不是”);說明理由;
(4)請再寫出一對符合條件的“共生有理數對”為(注意:不能與題目中已有的“共生有理數對”重復).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術的迅猛發展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統計結果繪制了如下兩幅不完整的統計圖,請結合圖中所給的信息解答下列問題:
![]()
(1)這次統計共抽查了 名學生;在扇形統計圖中,表示“QQ”的扇形圓心角的度數為 ;
(2)將條形統計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
![]()
(1)求∠BOD的度數;
(2)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀.已知購買甲型機器人1臺,乙型機器人2臺,共需14萬元;購買甲型機器人2臺,乙型機器人3臺,共需24萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型和乙型機器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃購買這兩種型號的機器人共8臺,總費用不超過41萬元,并且使這8臺機器人每小時分揀快遞件數總和不少于8300件,則該公司有哪幾種購買方案?哪個方案費用最低,最低費用是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com