【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點E在BC上.過點D作DF∥BC,連接DB.
![]()
求證:(1)△ABD≌△ACE;
(2)DF=CE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)求出∠BAD=∠BAC,根據SAS證出△BAD≌△CAE即可;
(2)根據全等推出∠DBA=∠C,根據等腰三角形性質得出∠C=∠ABC,根據平行線性質得出∠ABC=∠DFB,推出∠DFB=∠DBF,根據等腰三角形的判定推出即可.
(1)∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠EAC.在△BAD和△CAE中,∵
,∴△BAD≌△CAE(SAS);
(2)∵△BAD≌△CAE,∴∠DBA=∠C.
∵AB=AC,∴∠C=∠ABC.
∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.
科目:初中數學 來源: 題型:
【題目】⑴ 閱讀理解:我們知道在直角三角形中,有無數組勾股數,例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數,例如:3、4、5;是三個連續正整數組成的勾股數.
解決問題:① 在無數組勾股數中,是否存在三個連續偶數能組成勾股數?
答: ,若存在,試寫出一組勾股數: .
② 在無數組勾股數中,是否還存在其它的三個連續正整數能組成勾股數?若存在,求出勾股數,若不存在,說明理由.
③ 在無數組勾股數中,是否存在三個連續奇數能組成勾股數?若存在,求出勾股數,若不存在,說明理由.
⑵ 探索升華:是否存在銳角△ABC三邊也為連續正整數;且同時還滿足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三邊的長;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先化簡,再求值:
(1)(x+1)2+x(x-2),其中x=-
;
(2)[(xy+2)(xy-2)-2(x2y2-2)]÷xy,其中x=10,y=-
;
(3)已知a+b=12,ab=20,求a(a+b)(a-b)-a(a+b)2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣
x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為
m. ![]()
(1)求該拋物線的函數關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ABC=90°,AB=BC,點D是AC的中點,直角∠EDF的兩邊分別交AB、BC于點E、F,給出以下結論:①AE=BF;②S四邊形BEDF=
S△ABC;③△DEF是等腰直角三角形;④當∠EDF在△ABC內繞頂點D旋轉時D旋轉時(點E不與點A、B重合),∠BFE=∠CDF,上述結論始終成立的有( )個.
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了慶祝建校八十周年,某校各班都在開展豐富多彩的慶祝活動,八年級(3)班開展了手工制作競賽,每個同學都在規定時間內完成一件手工作品.陳莉同學制作手工作品的第一、二個步驟是:①先裁下了一張長BC=20 cm,寬AB=16 cm的長方形紙片ABCD;②將紙片沿著直線AE折疊,使點D恰好落在BC邊上的F處……請你根據①②步驟解答下列問題.
![]()
(1)找出圖中的∠FEC的余角;
(2)計算EC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列大棚蔬菜種植情況統計圖,回答問題:
(1)填上扇形統計圖中括號中的數據;
(2)哪種蔬菜種植面積最大?
(3)哪兩種蔬菜種植面積較接近?
(4)已知豆角種了27公頃,種植蔬菜的總面積是多少公頃?種植西紅柿多少公頃?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com