【題目】如圖,菱形ABCD的邊長為2,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為 . ![]()
【答案】![]()
+1
【解析】解:連結DE.
∵BE的長度固定,
∴要使△PBE的周長最小只需要PB+PE的長度最小即可,
∵四邊形ABCD是菱形,
∴AC與BD互相垂直平分,
∴P′D=P′B,
∴PB+PE的最小長度為DE的長,
∵菱形ABCD的邊長為2,E為BC的中點,∠DAB=60°,
∴△BCD是等邊三角形,
又∵菱形ABCD的邊長為2,
∴BD=2,BE=1,DE=
,
∴△PBE的最小周長=DE+BE=
+1,
故答案為:
+1.![]()
連接BD,與AC的交點即為使△PBE的周長最小的點P;由菱形的性質得出∠BPC=90°,由直角三角形斜邊上的中線性質得出PE=BE,證明△PBE是等邊三角形,得出PB=BE=PE=1,即可得出結果.
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
![]()
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點E、點G分別在直線AB、直線CD上,點F在兩直線外,連接EF、FG
![]()
(1)如圖1,AB∥CD,求證:∠AEF+∠FGC=∠EFG;
(2)若直線AB與直線CD不平行,連接EG,且EG同時平分∠BEF和∠FGD.
①如圖2,請探究∠AEF、∠FGC、∠EFG之間的數量關系?并說明理由;
②如圖3,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的
,則∠EFG=______°(直接寫出答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某人到島上去探寶,從A處登陸后先往東走4 km,又往北走1.5 km,遇到障礙后又往西走2 km,再折回向北走到4.5 km處往東一拐,僅走0.5 km就找到寶藏.問登陸點A與寶藏埋藏點B之間的距離是多少?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數y=
和一次函數y=﹣x+a﹣2(a為常數)
(1)當a=0時,求反比例函數與一次函數的交點坐標.
(2)當反比例函數與一次函數有兩個交點時,請確定a的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發,已知兩家相距10千米,小張出發必過小李家.
(1)若兩人同時出發,小張車速為20千米,小李車速為15千米,經過多少小時能相遇?
(2)若小李的車速為10千米,小張提前20分鐘出發,兩人商定小李出發后半小時二人相遇,則小張的車速應為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數軸上三點A,O,B表示的數分別為6,0,-4,動點P從A出發,以每秒6個單位的速度沿數軸向左勻速運動.
(1)當點P到點A的距離與點P到點B的距離相等時,點P在數軸上表示的數是 ;
(2)另一動點R從B出發,以每秒4個單位的速度沿數軸向左勻速運動,若點P、R同時出發,問點P運動多少時間追上點R?
(3)若M為AP的中點,N為PB的中點,點P在運動過程中,線段MN的長度是否發生變化?若發生變化,請你說明理由;若不變,請你畫出圖形,并求出線段MN的長度.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com