【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、D在x軸的負半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數y=
(k為常數,k≠0)的圖象上,正方形ADEF的面積為4,且BF=2AF,則k值為( )
![]()
A. 4B. -4C. 6D. -6
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點C在x軸的負半軸上,點A在y軸正半軸上,矩形OABC的面積為8
.把矩形OABC沿DE翻折,使點B與點O重合,點C落在第三象限的G點處,作EH⊥x軸于H,過E點的反比例函數y=
圖象恰好過DE的中點F.則k=_____,線段EH的長為:_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關于x的不等式ax2<kx﹣2的解集;
(2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點.學完了三角函數知識后,劉明和王華同學決定用自己學到的知識測量“大王米”的高度,他們制訂了測量方案,并利用課余時間完成了實地測量.測量項目及結果如下表:
項目 | 內容 | |||
課題 | 測量鄭州會展賓館的高度 | |||
測量示意圖 |
| 如圖,在E點用測傾器DE測得樓頂B的仰角是α,前進一段距離到達C點用測傾器CF測得樓頂B的仰角是β,且點A、B、C、D、E、F均在同一豎直平面內 | ||
測量數據 | ∠α的度數 | ∠β的度數 | EC的長度 | 測傾器DE,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … | |||
請你幫助該小組根據上表中的測量數據,求出鄭州會展賓館的高度(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結果保留整數)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax-2x+c(a≠0)與x軸,y軸分別交于點A,B,C三點,已知點(-2,0),C(0,-8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠計劃生產A、B兩種產品共50件,需購買甲、乙兩種材料.生產一件A產品需甲種材料30千克、乙種材料10千克;生產一件B產品需甲、乙兩種材料各20千克.經測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產B產品不少于28件,問符合條件的生產方案有哪幾種?
(3)在(2)的條件下,若生產一件A產品需加工費200元,生產一件B產品需加工費300元,應選擇哪種生產方案,使生產這50件產品的成本最低?(成本=材料費+加工費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是( )
![]()
A.
aB. aC.
D. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com