【題目】如圖,△ACE是以ABCD的對角線AC為邊的等邊三角形,點C與點E關于x軸對稱.若E點的坐標是(7,﹣3
),則D點的坐標是 . ![]()
科目:初中數學 來源: 題型:
【題目】如圖,已知直線AC∥BD,直線AB,CD不平行,點P在直線AB上,且和點A,B不重合.
(1)如圖①,當點P在線段AB上時,若∠PAC=20°,∠PDB=30°,求∠CPD的度數; ![]()
(2)當點P在A,B兩點之間運動時,∠PCA,∠PDB,∠CPD之間滿足什么樣的等量關系?(直接寫出答案)
(3)如圖②,當點P在線段AB延長線運動時,∠PCA,∠PDB,∠CPD之間滿足什么樣的等量關系?并說明理由. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在網格圖中建立平面直角坐標系,
的頂點坐標為
、
、
.
![]()
(1)若將
向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的
;
(2)畫出
繞C1順時針方向旋轉900后得到的
;
(3)
與
是中心對稱圖形,請寫出對稱中心的坐標: ;并計算
的面積: .
(4)在坐標軸上是否存在P點,使得△PAB與△CAB的面積相等,若有,則求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”![]()
(1)概念理解:
請你根據上述定義舉一個等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結AC,BD,試探究AC與BD的數量關系,并說明理由;
(3)應用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點A(-3,4)、B(-3,0)、C(-1,0) .以D為頂點的拋物線y = ax2+bx+c過點B. 動點P從點D出發,沿DC邊向點C運動,同時動點Q從點B出發,沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒. 過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.
![]()
(1)求拋物線的解析式;
(2)當t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,在矩形ABCD內(包括其邊界)是否存在點H,使以B,Q,E,H為頂點的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com