【題目】如圖,水庫大壩的橫斷面為四邊形ABCD,其中AD∥BC,壩頂BC=10米,壩高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角為30°.
![]()
(1)求壩底AD的長度(結果精確到1米);
(2)若壩長100米,求建筑這個大壩需要的土石料(參考數據:
)
【答案】(1)AD=95米;(2)建筑這個大壩需要的土石料 105000米3.
【解析】試題分析:(1)作BE⊥AD于E,CF⊥AD于F,根據坡度的概念求出AE的長,根據直角三角形的性質求出DF的長,計算即可;
(2)根據梯形的面積公式乘以長計算即可得解.
試題解析:(1)作BE⊥AD于E,CF⊥AD于F,
![]()
則四邊形BEFC是矩形,
∴EF=BC=10米,
∵BE=20米,斜坡AB的坡度i=1:2.5,
∴AE=50米,
∵CF=20米,斜坡CD的坡角為30°,
∴DF=
≈35(米),
∴AD=AE+EF+FD=95(米);
(2)建筑這個大壩需要的土石料:
×(95+10)×20×100=105000(米3).
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,AD∥BC,要判別四邊形ABCD是平行四邊形,還需滿足條件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣2mx+4m﹣8,
(1)當x≤2時,函數值y隨x的增大而減小,求m的取值范圍.
(2)以拋物線y=x2﹣2mx+4m﹣8的頂點A為一個頂點作該拋物線的內接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關的定值嗎?若是,請求出這個定值;若不是,請說明理由.
(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點的橫坐標均為整數,求整數m的最小值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距離O點240米.如果火車行駛時,周圍200米以內會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,
(1)A處是否會受到火車的影響,并寫出理由
(2)如果A處受噪音影響,求影響的時間.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統計圖和頻數分布直方圖(不完整).規定x≥6.25為合格,x≥9.25為優秀.
![]()
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數落在哪一組?扇形統計圖中D組對應的圓心角是多少度?
(3)要從成績優秀的學生中,隨機選出2人介紹經驗,已知甲、乙兩位同學的成績均為優秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面上取定一點O稱為極點;從點O出發引一條射線Ox稱為極軸;線段OP的長度稱為極徑。點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規定逆時針方向轉動角度為正)來確定,即P(3,60°)或P(3,300°)或P(3,420°)等,則點P關于點O成中心對稱的點Q的極坐標可以表示為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是計算機中的一種益智小游戲“掃雷”的畫面,在一個9×9的小方格的正方形雷區中,隨機埋藏著10顆地雷,每個小方格內最多只能埋藏1顆地雷。
![]()
小紅在游戲開始時首先隨機地點擊一個方格,該方格中出現了數字“3”,其意義表示該格的外圍區域(圖中陰影部分,記為A區域)有3顆地雷;接著,小紅又點擊了左上角第一個方格,出現了數字“1”,其外圍區域(圖中陰影部分)記為B區域;“A區域與B區域以及出現數字‘1’和‘3’兩格”以外的部分記為C區域。小紅在下一步點擊時要盡可能地避開地雷,那么她應點擊A. B. C中的哪個區域?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,雙曲線y=
與直線y=﹣2x+2交于點A(﹣1,a).
(1)求a,m的值;
(2)求該雙曲線與直線y=﹣2x+2另一個交點B的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=
x2+bx+c的圖象經過點A(﹣3,6),并與x軸交于點B(﹣1,0)和點C,頂點為P.
(1)求這個二次函數的解析式,并在下面的坐標系中畫出該二次函數的圖象;
(2)設D為線段OC上的一點,滿足∠DPC=∠BAC,求點D的坐標;
(3)在x軸上是否存在一點M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com