題目列表(包括答案和解析)
的展開式中
的系數(shù)為____________.
【解析】二項展開式的通項為
,令
,解得
,所以
,所以
的系數(shù)為7.
設(shè)函數(shù)
=
的所有正的極小值點從小到大排成的數(shù)列為
.
(Ⅰ)求數(shù)列
的通項公式.
(Ⅱ)設(shè)
的前
項和為
,求
.
【解析】 (Ⅰ)
,令
,可得
,或
,
,又由極小值點定義可判定
。
(Ⅱ)由(Ⅰ)知
,所以
,
即
.
設(shè)f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由
的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一問中,![]()
即
變換分為三步,①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;
第二問中因為
,所以
,則
,又![]()
,
,從而![]()
進而得到結(jié)論。
(Ⅰ) 解:![]()
即
。…………………………………3分
變換的步驟是:
①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;…………………………………3分
(Ⅱ) 解:因為
,所以
,則
,又![]()
,
,從而
……2分
(1)當(dāng)
時,
;…………2分
(2)當(dāng)
時;![]()
已知
,函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中
,那么當(dāng)
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當(dāng)
時,
又
∴ 函數(shù)
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當(dāng)
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當(dāng)
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數(shù)
的取值范圍是(![]()
,
)
| 10-x |
| 10+x |
| 10-x |
| 10+x |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com