題目列表(包括答案和解析)
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
已知函數 ![]()
R).
(Ⅰ)若
,求曲線
在點
處的的切線方程;
(Ⅱ)若
對任意 ![]()
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當
時,
.
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當
時,
.
,
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為
,所以
恒成立,
故
在
上單調遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當
時,
在
上恒成立,
故
在
上單調遞增,
即
.
……10分
(2)當
時,令
,對稱軸
,
則
在
上單調遞增,又
① 當
,即
時,
在
上恒成立,
所以
在
單調遞增,
即
,不合題意,舍去
②當
時,
,
不合題意,舍去 14分
綜上所述:
把函數
的圖象按向量
平移得到函數
的圖象.
(1)求函數
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設
上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
,便可以得到結論。第二問中,令
,然后求導,利用最小值大于零得到。
(1)解:設
上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調遞增.……10分
故
,即![]()
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調遞減;當
時
單調遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. ①
令
則![]()
當
時,
單調遞增;當
時,
單調遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出
取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com