題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設平面PCD的法向量
,
則
,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設點E的坐標為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因為
,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
![]()
【解析】(Ⅰ)因為![]()
又
是平面PAC內的兩條相較直線,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直線PD和平面PAC所成的角,從而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因為四邊形ABCD為等腰梯形,
,所以
均為等腰直角三角形,從而梯形ABCD的高為
于是梯形ABCD面積
在等腰三角形AOD中,![]()
所以![]()
故四棱錐
的體積為
.
![]()
【點評】本題考查空間直線垂直關系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD
平面PAC即可,第二問由(Ⅰ)知,BD
平面PAC,所以
是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由
算得體積
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面
面
;
(2)求
與
所成的角;
(3)求面
與面
所成二面角的余弦值.
![]()
【解析】(1)利用面面垂直的性質,證明CD⊥平面PAD.
(2)建立空間直角坐標系,寫出向量
與
的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面
的法向量和面
的一個法向量,然后求出兩法向量的夾角即可.
1957年世界人口30億,17年后(即1974年)增加了10億,即達40億;又過13年達到50億;到1999年全世界總人口達到60億.以此速度,人口學專家預測到2025年,世界人口將達到80億;而到2050年人口將超過90億,其中亞洲人口最高,將達到52.68億,北美洲3.92億、歐洲8.28億、拉丁美洲及加勒比地區8.09億,非洲17.68億.
有一位同學根據以上提供的數據制作了三幅統計圖(如圖1,圖2,圖3),請根據這些圖完成問題:
(1)三副統計圖分別表示了什么內容?
(2)從哪幅統計圖中最能看出世界人口的總體變化情況?
(3)2050年非洲人口大約將達到多少億?你是從哪幅統計圖中得到這個數據的?
(4)2050年亞洲人口比其他各洲人口的總和還要多,你從哪幅統計圖中可以明顯地得到這個結論?
(5)從全世界人口的快速增長中,你得到什么啟發?并請發表一下你的感想!
數列
首項
,前
項和
滿足等式
(常數
,
……)
(1)求證:
為等比數列;
(2)設數列
的公比為
,作數列
使
(
……),求數列
的通項公式.
(3)設
,求數列
的前
項和
.
【解析】第一問利用由
得![]()
兩式相減得![]()
故
時,![]()
從而
又
即
,而![]()
從而
故![]()
第二問中,
又
故
為等比數列,通項公式為![]()
第三問中,![]()
兩邊同乘以![]()
利用錯位相減法得到和。
(1)由
得![]()
兩式相減得![]()
故
時,![]()
從而
………………3分
又
即
,而![]()
從而
故![]()
對任意
,
為常數,即
為等比數列………………5分
(2)
……………………7分
又
故
為等比數列,通項公式為
………………9分
(3)![]()
兩邊同乘以![]()
………………11分
兩式相減得![]()
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com