題目列表(包括答案和解析)
一、選擇題:本大題共10小題,每小題5分,共50分.
題號(hào)
1
2
3
4
5
6
7
8
9
10
解答
D
D
A
B
D
C
C
B
D
D
二、填空題:本大題共7小題,每小題4分,共28分
11. 負(fù)
12.
13. 7 14.
15. 4010
16.
17.若他不放棄這5道題,則這5道題得分的期望為:
三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
18.解:(Ⅰ)①,②,③,④處的數(shù)值分別為:3,0.025,0.100,1.…………4分
(Ⅱ)年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image253.jpg)
…………………………………………………………………………8分
(Ⅲ)(?)120分及以上的學(xué)生數(shù)為:(0.275+0.100+0.050)×5000=2125;
(?)平均分為:
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image255.gif)
(?)成績(jī)落在[126,150]中的概率為:年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image257.gif)
…………………………………………………………………………14分
19.解:(Ⅰ) 由三視圖可知,四棱錐
的底面是邊長(zhǎng)為1的正方形,
側(cè)棱
底面
,且
.
∴
,
即四棱錐
的體積為
.
………………………………4分
(Ⅱ) 不論點(diǎn)
在何位置,都有
.
證明如下:連結(jié)
,∵
是正方形,∴
.
∵
底面
,且
平面
,∴
.
又∵
,∴
平面
.
∵不論點(diǎn)
在何位置,都有年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image286.gif)
平面
.
∴不論點(diǎn)
在何位置,都有
. ………………………………8分
(Ⅲ) 解法1:在平面
內(nèi)過(guò)點(diǎn)
作
于
,連結(jié)
.
∵
,
,
,
∴Rt△
≌Rt△
,
從而△
≌△
,∴
.
∴
為二面角
的平面角.
在Rt△
中,
,
又
,在△
中,由余弦定理得
,
∴
,即二面角
的大小為
. …………………14分
解法2:如圖,以點(diǎn)
為原點(diǎn),
所在的直線分別為
軸建立空間直角
坐標(biāo)系. 則
,從而
,
,
,
.
設(shè)平面
和平面
的法向量分別為
,
,
由
,取
.
由
,取
.
設(shè)二面角
的平面角為
,
則
,
∴
,即二面角
的大小為
. …………………14分
20.解:(Ⅰ)令
①
令
②
由①、②知,
,又
是
上的單調(diào)函數(shù),
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image376.gif)
. ………………………………………………………………………4分
(Ⅱ)
,
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image382.gif)
.
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image386.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image388.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image390.gif)
,
…………………………………………………………………10分
(Ⅲ)令
,則
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image398.gif)
……………………12分
對(duì)
都成立年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image402.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image406.gif)
…………………………………………………………………………………15分
21.解:(Ⅰ)設(shè)B(
,
),C(
,年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image414.gif)
),BC中點(diǎn)為(
),F(2,0).
則有
.
兩式作差有
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image422.gif)
.
設(shè)直線BC的斜率為
,則有
. (1)
因F2(2,0)為三角形重心,所以由
,得年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image431.gif)
由
得
,
代入(1)得
.
直線BC的方程為
.
…………………………………………7分
(Ⅱ)由AB⊥AC,得
(2)
設(shè)直線BC方程為
,得
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image445.gif)
,年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image449.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image453.gif)
代入(2)式得,
,
解得
或年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image459.gif)
故直線
過(guò)定點(diǎn)(0,
. …………………………………………14分
22.解:(Ⅰ)年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image220.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image464.gif)
.
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image468.gif)
當(dāng)
時(shí),年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image472.gif)
.從而有
.…………………5分
(Ⅱ)設(shè)P
,切線
的傾斜角分別為
,斜率分別為
.則
.
由切線
與
軸圍成一個(gè)等腰三角形,且
均為正數(shù)知,該三角形為鈍角三角形,
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image486.gif)
或
.又年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image496.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image492.gif)
.從而,
.
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image502.gif)
…………………………………………………………………………………10分
(Ⅲ)令年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image504.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image506.gif)
;
.
.
又
.
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image516.gif)
年第二學(xué)期高三八校聯(lián)考--數(shù)學(xué)理.files/image518.gif)
.
當(dāng)
時(shí),即
時(shí),曲線
與曲線
無(wú)公共點(diǎn),故方程
無(wú)實(shí)數(shù)根;
當(dāng)
時(shí),即
時(shí),曲線
與曲線
有且僅有1個(gè)公共點(diǎn),故方程
有且僅有1個(gè)實(shí)數(shù)根;
當(dāng)
時(shí),即
時(shí),曲線
與曲線
有2個(gè)交點(diǎn),故方程
有2個(gè)實(shí)數(shù)根.
…………………………………………………………………15分
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com