題目列表(包括答案和解析)
已知函數![]()
(1)若函數
的圖象經過P(3,4)點,求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數函數的性質的運用。第一問中,因為函數
的圖象經過P(3,4)點,所以
,解得
,因為
,所以
.
(2)問中,對底數a進行分類討論,利用單調性求解得到。
(3)中,由
知,
.,指對數互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數
的圖象經過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當
時,
;
當
時,
. ……………… 6分
因為,
,![]()
當
時,
在
上為增函數,∵
,∴
.
即
.當
時,
在
上為減函數,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com