題目列表(包括答案和解析)
一支車隊有15輛車,某天依次出發執行運輸任務,第一輛車于下午2時出發,第二輛車于下午2時10分出發,第三輛車于下午2時20分出發,依此類推。假設所有的司機都連續開車,并都在下午6時停下來休息。
(1)到下午6時最后一輛車行駛了多長時間?
(2)如果每輛車的行駛速度都是60
,這個車隊當天一共行駛了多少千米?
【解析】第一問中,利用第一輛車出發時間為下午2時,每隔10分鐘即
小時出發一輛
則第15輛車在
小時,最后一輛車出發時間為:
小時
第15輛車行駛時間為:
小時(1時40分)
第二問中,設每輛車行駛的時間為:
,由題意得到
是以
為首項,
為公差的等差數列
則行駛的總時間為:![]()
則行駛的總里程為:
運用等差數列求和得到。
解:(1)第一輛車出發時間為下午2時,每隔10分鐘即
小時出發一輛
則第15輛車在
小時,最后一輛車出發時間為:
小時
第15輛車行駛時間為:
小時(1時40分)
……5分
(2)設每輛車行駛的時間為:
,由題意得到
是以
為首項,
為公差的等差數列
則行駛的總時間為:
……10分
則行駛的總里程為:![]()
已知數列
是公差不為零的等差數列,
,且
、
、
成等比數列。
⑴求數列
的通項公式;
⑵設
,求數列
的前
項和
。
【解析】第一問中利用等差數列
的首項為
,公差為d,則依題意有:
![]()
第二問中,利用第一問的結論得到數列的通項公式,
,利用裂項求和的思想解決即可。
已知函數![]()
;
(1)若函數
在其定義域內為單調遞增函數,求實數
的取值范圍。
(2)若函數
,若在[1,e]上至少存在一個x的值使
成立,求實數
的取值范圍。
【解析】第一問中,利用導數
,因為
在其定義域內的單調遞增函數,所以
內滿足
恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內的單調遞增函數,
所以
內滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當且僅當
,即x=1時取等號,
在其定義域內為單調增函數的實數k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設![]()
上的增函數,
依題意需![]()
實數k的取值范圍是![]()
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com