題目列表(包括答案和解析)
| A.(-∞,10) | B.(10,+∞) | C.(-∞,9) | D.(9,+∞) |
已知函數
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數
的值;
(Ⅱ)求
在區間
上的最大值;
(Ⅲ)對任意給定的正實數
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增。∴
在
最大值為
。
綜上,當
時,即
時,
在區間
上的最大值為2;
當
時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
答案
B
B
B
C
A
D
B
C
C
B
二、填空題:
題號
11
12
13
14
15
答案
1000
%20數學(文科).files/image225.gif)
%20數學(文科).files/image227.gif)
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由
=
,得:
=
,
即:
,
又∵0<
<
∴
=
.
(2)直線
方程為:
.
,
點
到直線
的距離為:
.
∵%20數學(文科).files/image251.gif)
∴
∴
又∵0<
<
,
∴sin
>0,cos
<0
∴
∴sin
-cos
=
17.(本小題滿分12分)
解:(1)%20數學(文科).files/image262.gif)
某同學被抽到的概率為
設有
名男同學,則
,%20數學(文科).files/image271.gif)
男、女同學的人數分別為
(2)把
名男同學和
名女同學記為
,則選取兩名同學的基本事件有%20數學(文科).files/image281.gif)
共
種,其中有一名女同學的有
種
選出的兩名同學中恰有一名女同學的概率為
(3)
,%20數學(文科).files/image294.gif)
,%20數學(文科).files/image298.gif)
第二同學的實驗更穩定
18.(本小題滿分14分)
解:(1)
分別是棱
中點 %20數學(文科).files/image305.gif)