題目列表(包括答案和解析)
已知函數(shù)
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)
時,
,則
。
依題意得:
,即
解得
第二問當(dāng)
時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時,
,令
得![]()
當(dāng)
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當(dāng)
時,
.當(dāng)
時,
,
最大值為0;
當(dāng)
時,
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時,即
時,
在區(qū)間
上的最大值為2;
當(dāng)
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實(shí)數(shù)
,曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值![]()
于是對一切
恒成立,當(dāng)且僅當(dāng)
. ①
令
則![]()
當(dāng)
時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)
時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知數(shù)列
是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列
的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當(dāng)n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時,數(shù)列
中的
成等比數(shù)列
設(shè)A是由m×n個實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以![]()
![]()
![]()
所以,![]()
對數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
已知函數(shù)
,其中
.
(1)若
在
處取得極值,求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)
在
的單調(diào)性;
(3)若函數(shù)
在
上的最小值為2,求
的取值范圍.
【解析】第一問,
因
在
處取得極值
所以,
,解得
,此時
,可得求曲線
在點(diǎn)
處的切線方程為:![]()
第二問中,易得
的分母大于零,
①當(dāng)
時,
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)
時,由
可得
,由
解得![]()
第三問,當(dāng)
時由(2)可知,
在
上處取得最小值
,
當(dāng)
時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)
在
上的最小值為2時,求
的取值范圍是![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com