題目列表(包括答案和解析)
已知函數
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數
的值;
(Ⅱ)求
在區間
上的最大值;
(Ⅲ)對任意給定的正實數
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增。∴
在
最大值為
。
綜上,當
時,即
時,
在區間
上的最大值為2;
當
時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
設函數![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數
在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程。………………4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調遞增。∴滿足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是![]()
(本小題滿分12分)已知函數![]()
(I)若函數
在區間
上存在極值,求實數a的取值范圍;
(II)當
時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1)
,其定義域為
,則
令
,
則
,
當
時,
;當
時,![]()
在(0,1)上單調遞增,在
上單調遞減,
即當
時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當
時,
恒成立,即
,
令
,則
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函數
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當
時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當
時,![]()
令
,得![]()
時,
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數
的單調遞增區間為
,
,單調遞減區間為![]()
當
,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當
且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為![]()
當
,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為![]()
所以
在區間
上的最大值為
。
設函數
.
(Ⅰ) 當
時,求
的單調區間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數
的定義域為(0,2),
.
當a=1時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數
的定義域為(0,2),
.
(1)當
時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com