題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值![]()
于是對一切
恒成立,當(dāng)且僅當(dāng)
. ①
令
則![]()
當(dāng)
時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)
時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導(dǎo),得![]()
取
,則
得到結(jié)論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時,
;
當(dāng)
時,
;
當(dāng)
時,
;
猜想:當(dāng)
時,
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導(dǎo),得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當(dāng)
時,
;
當(dāng)
時,
;
當(dāng)
時,
;
…………6分
猜想:當(dāng)
時,
,下面用數(shù)學(xué)歸納法證明:
由上述過程可知,
時結(jié)論成立,
假設(shè)當(dāng)
時結(jié)論成立,即
,
當(dāng)
時,![]()
而![]()
∴![]()
即
時結(jié)論也成立,
∴當(dāng)
時,
成立。
…………11分
綜上得,當(dāng)
時,
;
當(dāng)
時,
;
當(dāng)
時,
已知點(diǎn)
為圓
上的動點(diǎn),且
不在
軸上,
軸,垂足為
,線段
中點(diǎn)
的軌跡為曲線
,過定點(diǎn)![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點(diǎn)。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點(diǎn)
,使得
總能被
軸平分
【解析】第一問中設(shè)
為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結(jié)論直線
與曲線
總有兩個公共點(diǎn).
然后設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設(shè)
為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當(dāng)
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點(diǎn)
,使得
總能被
軸平分
已知數(shù)列
的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項(xiàng)公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用
關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時,
,命題成立;
②假設(shè)
時,命題成立,即
,
則當(dāng)
時,![]()
![]()
即![]()
即![]()
故當(dāng)
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知
是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若
,是否存在
,有
?請說明理由;
(Ⅱ)若
(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數(shù)列
中存在某個連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)
時,則![]()
即
,其中
是大于等于
的整數(shù)
反之當(dāng)
時,其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)
當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時,
式不成立。由
式得
,整理![]()
當(dāng)
時,符合題意。當(dāng)
,
為奇數(shù)時,![]()
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)
時,則![]()
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時,其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)
當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時,
式不成立。由
式得
,整理![]()
當(dāng)
時,符合題意。當(dāng)
,
為奇數(shù)時,![]()
![]()
由
,得
![]()
當(dāng)
為奇數(shù)時,此時,一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時,命題都成立
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com