已知橢圓
經過點
,離心率
,直線
與橢圓交于
,
兩點,向量![]()
,![]()
,且
.
(1)求橢圓的方程;
(2)當直線
過橢圓的焦點
(
為半焦距)時,求直線
的斜率
.
科目:高中數學 來源: 題型:解答題
已知定點A(1,0),B (2,0) .動點M滿足
,
(1)求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:
的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且
.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線
與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,點
到點
的距離比它到
軸的距離多1,記點
的軌跡為
.
(1)求軌跡為
的方程;
(2)設斜率為
的直線
過定點
,求直線
與軌跡
恰好有一個公共點,兩個公共點,三個公共點時
的相應取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知兩條拋物線
和
,過原點
的兩條直線
和
,
與
分別交于
兩點,
與
分別交于
兩點.
(1)證明:![]()
(2)過原點
作直線
(異于
,
)與
分別交于
兩點.記
與
的面積分別為
與
,求
的值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知橢圓的焦點在
軸上,離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2) 以橢圓的長軸為直徑作圓
,設
為圓
上不在坐標軸上的任意一點,
為
軸上一點,過圓心
作直線
的垂線交橢圓右準線于點
.問:直線
能否與圓
總相切,如果能,求出點
的坐標;如果不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點O,離心率e=
,一條準線的方程為x=2
.![]()
(Ⅰ)求該橢圓的標準方程.
(Ⅱ)設動點P滿足
,其中M,N是橢圓上的點.直線OM與ON的斜率之積為﹣
.
問:是否存在兩個定點F1,F2,使得|PF1|+|PF2|為定值.若存在,求F1,F2的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關系;
(2)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com