【題目】【2017河北唐山三模】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在區(qū)間
有唯一零點(diǎn)
,證明:
.
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)求導(dǎo)得
, 分
,
,
,三種情況討論可得單調(diào)區(qū)間.
(Ⅱ)由(1)及
可知:僅當(dāng)極大值等于零,即
且 ![]()
所以
,且
,消去
得
,構(gòu)造函數(shù),證明單調(diào)且零點(diǎn)存在且唯一即可.
試題解析:(Ⅰ)
,
,
令
,
,
若
,即
,則
,
當(dāng)
時(shí),
,
單調(diào)遞增,
若
,即
,則
,僅當(dāng)
時(shí),等號(hào)成立,
當(dāng)
時(shí),
,
單調(diào)遞增.
若
,即
,則
有兩個(gè)零點(diǎn)
,
,
由
,
得
,
當(dāng)
時(shí),
,
,
單調(diào)遞增;
當(dāng)
時(shí),
,
,
單調(diào)遞減;
當(dāng)
時(shí),
,
,
單調(diào)遞增.
綜上所述,
當(dāng)
時(shí),
在
上單調(diào)遞增;
當(dāng)
時(shí),
在
和
上單調(diào)遞增,
在
上單調(diào)遞減.
(Ⅱ)由(1)及
可知:僅當(dāng)極大值等于零,即
時(shí),符合要求.
此時(shí),
就是函數(shù)
在區(qū)間
的唯一零點(diǎn)
.
所以
,從而有
,
又因?yàn)?/span>
,所以
,
令
,則
,
設(shè)
,則
,
再由(1)知:
,
,
單調(diào)遞減,
又因?yàn)?/span>
,
,
所以
,即![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為
,過點(diǎn)
的一條直線與拋物線
交于
兩點(diǎn),若拋物線在
兩點(diǎn)的切線交于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)直線
與直線
的夾角為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知橢圓
:
的左頂點(diǎn)為
,右焦點(diǎn)為
,過點(diǎn)
且斜率為1的直線交橢圓
于另一點(diǎn)
,交
軸于點(diǎn)
,
.
![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
作直線
與橢圓
交于
兩點(diǎn),連接
(
為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓
于點(diǎn)
,求
面積的最大值及取最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017山西三區(qū)八校二模】已知函數(shù)
(其中
,
為常數(shù)且
)在
處取得極值.
(Ⅰ)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)若
在
上的最大值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知函數(shù)
,設(shè)關(guān)于
的方程
有
個(gè)不同的實(shí)數(shù)解,則
的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為備戰(zhàn)
年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊(duì)舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊(duì)內(nèi)單打?qū)贡荣悾績(jī)扇吮荣愐粓?chǎng),共賽三場(chǎng),每場(chǎng)比賽勝者得
分,負(fù)者得
分,在每一場(chǎng)比賽中,甲勝乙的概率為
,丙勝甲的概率為
,乙勝丙的概率為
,且各場(chǎng)比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為
.
(Ⅰ)求
的值;
(Ⅱ)設(shè)在該次對(duì)抗比賽中,丙得分為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系xOy中,橢圓C:
(a>b>0)的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率為
.
(1)求a,b的值.
(2)設(shè)P是橢圓C長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作斜率為k的直線l交橢圓C于A、B兩點(diǎn).
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點(diǎn)P的位置無關(guān),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
﹣2ax+1+lnx
(1)當(dāng)a=0時(shí),若函數(shù)f(x)在其圖象上任意一點(diǎn)A處的切線斜率為k,求k的最小值,并求此時(shí)的切線方程;
(2)若函數(shù)f(x)的極大值點(diǎn)為x1 , 證明:x1lnx1﹣ax12>﹣1.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com