已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為

(1)求雙曲線C的方程;
(2)若直線

與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且

(其中O為原點(diǎn)). 求k的取值范圍.
(Ⅰ)

(Ⅱ

試題分析:(Ⅰ)設(shè)雙曲線方程為

由已知得

故雙曲線C的方程為

.4分
(Ⅱ)將

由直線l與雙曲線交于不同的兩點(diǎn)得

即

① 6分
設(shè)

,則

而


8分
于是


② 10分
由①、②得

故k的取值范圍為

12分
點(diǎn)評(píng):解答雙曲線綜合題時(shí),應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時(shí)要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長(zhǎng)公式及韋達(dá)定理綜合思考,重視對(duì)稱思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓

過點(diǎn)

,其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與

軸正半軸、

軸分別交于點(diǎn)

,與橢圓分別交于點(diǎn)

,各點(diǎn)均不重合,且滿足

,

. 當(dāng)

時(shí),試證明直線過定點(diǎn).過定點(diǎn)(1,0)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
拋物線

上的一動(dòng)點(diǎn)

到直線

距離的最小值是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知

滿足

,記目標(biāo)函數(shù)

的最大值為7,最小值為1,則

( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知拋物線

上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn)

,當(dāng)

時(shí),點(diǎn)

的橫坐標(biāo)的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線


的一個(gè)焦點(diǎn)與拋物線

的焦點(diǎn)重合,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線

的漸近線與圓

相切,則雙曲線的離心率為( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,已知F
1、F
2分別為橢圓C
1:

的上、下焦點(diǎn),其中F
1也是拋物線C
2:

的焦點(diǎn),點(diǎn)A是曲線C
1,C
2在第二象限的交點(diǎn),且


(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C
1上的動(dòng)點(diǎn),MN是圓C:

的直徑,求

的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線

的左右焦點(diǎn)分別是

,設(shè)

是雙曲線右支上一點(diǎn),

在

上投影的大小恰好為

,且它們的夾角為

,則雙曲線的離心率為( )
查看答案和解析>>