【題目】已知四棱錐
,底面
為菱形,
,
為
上的點(diǎn),過
的平面分別交
,
于點(diǎn)
,
,且
平面
.
![]()
(1)證明:
;
(2)當(dāng)
為
的中點(diǎn),
,
與平面
所成的角為
,求
與平面
所成角的正弦值.
【答案】(1)見證明(2) ![]()
【解析】
(1)連結(jié)
、
且
,連結(jié)
,先證明
平面
,可得
,再利用線面平行的性質(zhì)定理證明
,從而可得結(jié)論;(2)利用(1)可證明
平面
,利用
與平面
所成的角為
求出線段間的等量關(guān)系,以
,
,
分別為
,
,
軸,建立空間直角坐標(biāo)系,求出
,再利用向量垂直數(shù)量積為零列方程求出平面
的法向量,由空間向量夾角余弦公式可得結(jié)果.
(1)![]()
連結(jié)
、
且
,連結(jié)
.
因?yàn)椋?/span>
為菱形,所以,
,
因?yàn)椋?/span>
,所以,
,
因?yàn)椋?/span>
且
、![]()
平面
,
所以,
平面
,
因?yàn)椋?/span>![]()
平面
,所以,
,
因?yàn)椋?/span>
平面
,
且平面
平面
,
所以,
,
所以,
.
(2)![]()
由(1)知
且
,
因?yàn)?/span>
,且
為
的中點(diǎn),
所以,
,所以,
平面
,
所以
與平面
所成的角為
,所以
,
所以,
,
,因?yàn)椋?/span>
,所以,
.
以
,
,
分別為
,
,
軸,如圖所示建立空間直角坐標(biāo)系
記
,所以,
,
,
,
,
,
,
,
所以,
,
,![]()
記平面
的法向量為
,所以,
即
,
令
,解得
,
,所以,
,
記
與平面
所成角為
,所以,
.
所以,
與平面
所成角的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間幾何體
中,
與
均為邊長為
的等邊三角形,
為腰長為
的等腰三角形,平面
平面
,平面
平面
.
![]()
(1)試在平面
內(nèi)作一條直線,使直線上任意一點(diǎn)
與
的連線
均與平面
平行,并給出詳細(xì)證明
(2)求點(diǎn)
到平面
的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間和極值;
(2)討論
的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn)
,它與
軸相交所得的弦
的長為
,則滿足要求的動(dòng)圓其半徑的最小值是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
:
(
,
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
:
.
(1)說明
是哪一種曲線,并將
的方程化為極坐標(biāo)方程;
(2)若直線
的方程為
,設(shè)
與
的交點(diǎn)為
,
,
與
的交點(diǎn)為
,
,若
的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會(huì),每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績對(duì)學(xué)生進(jìn)行綜合評(píng)估,已知某年度參與評(píng)估的畢業(yè)生共有2000名,其評(píng)估成績
近似的服從正態(tài)分布
.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評(píng)估成績作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了頻率分布直方圖:
![]()
(1)求樣本平均數(shù)
和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若學(xué)校規(guī)定評(píng)估成績超過
分的畢業(yè)生可參加
三家公司的面試.
(ⅰ)用樣本平均數(shù)
作為
的估計(jì)值
,用樣本標(biāo)準(zhǔn)差
作為
的估計(jì)值
,請(qǐng)利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
(ⅱ)若三家公司每家都提供甲、乙、丙三個(gè)崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
| 9600 | 6400 | 5200 |
| 9800 | 7200 | 5400 |
| 10000 | 6000 | 5000 |
李華同學(xué)取得了三個(gè)公司的面試機(jī)會(huì),經(jīng)過評(píng)估,李華在三個(gè)公司甲、乙、丙三個(gè)崗位的面試成功的概率均為
,李華準(zhǔn)備依次從
三家公司進(jìn)行面試選崗,公司規(guī)定:面試成功必須當(dāng)場(chǎng)選崗,且只有一次機(jī)會(huì).李華在某公司選崗時(shí),若以該崗位工資與未進(jìn)行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇
公司的哪些崗位?
并說明理由.
附:
,若隨機(jī)變量
,
則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
有兩個(gè)零點(diǎn)
,則下列說法錯(cuò)誤的是( )
A.
B.
C.有極大值點(diǎn)
,且
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com