如圖,在四棱錐

中,

底面

,


,

,

是

的中點(diǎn).

(Ⅰ)求

和平面

所成的角的大小;
(Ⅱ)證明

平面

;
(Ⅲ)求二面角

的正弦值.
(1)

(2)要證明線面垂直關(guān)鍵里用線面垂直的判定定理來(lái)得到證明。
(3)

試題分析:(Ⅰ)解:在四棱錐

中,因

底面

,

平面

,故

.又

,

,從而

平面

.
故

在平面

內(nèi)的射影為

,
從而

為

和平面

所成的角.
在

中,

,故

.
所以

和平面

所成的角的大小為

.
(Ⅱ)證明:在四棱錐

中,
因

底面

,

平面

,故

.
由條件

,

,

面

.又

面

,

.
由

,

,可得

.

是

的中點(diǎn),

,

.綜上得

平面

.
(Ⅲ)解:過(guò)點(diǎn)

作

,垂足為

,連結(jié)

.由(Ⅱ)知,

平面

,

在平面

內(nèi)的射影是

,則

.
因此

是二面角

的平面角.由已知,得

.設(shè)

,得

,

,

,

.
在

中,

,

,則

.在

中,

點(diǎn)評(píng):解決的關(guān)鍵是熟練的根據(jù)角的定義,作出角,并能證明,同時(shí)結(jié)合三角形來(lái)解得,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,在矩形
ABCD中,
AB=4,
AD=2,
E為
AB的中點(diǎn),現(xiàn)將△
ADE沿直線
DE翻折成△
A′
DE,使平面
A′
DE⊥平面
BCDE,
F為線段
A′
D的中點(diǎn).


(1)求證:
EF//平面
A′
BC;(2)求直線
A′
B與平面
A′
DE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,△
ABC中,
AC=
BC=
AB,
ABED是邊長(zhǎng)為1的正方形,EB⊥底面
ABC,若
G,
F分別是
EC,
BD的中點(diǎn).
(1)求證:
GF∥底面
ABC;
(2)求證:
AC⊥平面
EBC;

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)

,

是兩條不同的直線,

,

是兩個(gè)不同的平面,則下列正確命題的序號(hào)
是
.
①.若

,

, 則

; ②.若

,

,則

;
③. 若

,

,則

; ④.若

,

,則

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=

,AF=1,M是線段EF的中點(diǎn).

(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)試在線段AC上確定一點(diǎn)P,使得PF與BC所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(理科)如圖分別是正三棱臺(tái)ABC-A
1B
1C
1的直觀圖和正視圖,O,O
1分別是上下底面的中心,E是BC中點(diǎn).

(1)求正三棱臺(tái)ABC-A
1B
1C
1的體積;
(2)求平面EA
1B
1與平面A
1B
1C
1的夾角的余弦;
(3) 若P是棱A
1C
1上一點(diǎn),求CP+PB
1的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知四棱柱

的底面是邊長(zhǎng)為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,

,
E是側(cè)棱AA
1的中點(diǎn),求

(1)求異面直線

與B
1E所成角的大小;
(2)求四面體

的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,在直棱柱ABC—A
1B
1C
1中,AC=BC=2,∠ACB=90º,AA
1=2

,E,F(xiàn)分別為AB、CB中點(diǎn),過(guò)直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為( ).

A.3或1 B.1 C.4或1 D.3或4
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖,在直棱柱

中,當(dāng)?shù)酌嫠倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005715557526.png" style="vertical-align:middle;" />滿足
時(shí),有

成立.(填上你認(rèn)為正確的一個(gè)條件即可)

查看答案和解析>>