【題目】已知橢圓
的離心率為
,右焦點(diǎn)為
,斜率為1的直線(xiàn)
與橢圓
交于
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓
的方程;
(2)
為橢圓
上任意一點(diǎn),若
,求
的最大值和最小值.
(3)求
的面積.
【答案】(1)
(2) 最大值為1和最小值為
(3)![]()
【解析】試題分析:(1)由離心率及焦點(diǎn)坐標(biāo),易得方程;
(2)設(shè)
則直線(xiàn)
的方程為
,與橢圓聯(lián)立由
得
的范圍,又
,即可得解;
(3)設(shè)直線(xiàn)
的方程為
,與橢圓聯(lián)立,利用韋達(dá)定理得中點(diǎn)坐標(biāo)
,從而由
的斜率
,解得
,進(jìn)而得
,由點(diǎn)到直線(xiàn)距離求得
,利用
求解即可.
試題解析:
(1)由已知得
,
,
解得
,又
,
所以橢圓
的方程為
.
(2)設(shè)
則直線(xiàn)
的方程為
,則
.
由
,得
①
,
的最大值為1和最小值為
.
(3)設(shè)直線(xiàn)
的方程為
,
由
,得
①
設(shè)
的坐標(biāo)分別為
,
,
中點(diǎn)為
,
則
,
,
因?yàn)?/span>
是等腰
的底邊,所以
,
所以
的斜率
,
解得
,此時(shí)方程①為
,
解得
,
,所以
,
,
所以
,此時(shí),點(diǎn)
到直線(xiàn)
的距離
,所以
的面積
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐A﹣BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形. ![]()
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求三棱錐B﹣MDC的體積VB﹣MDC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1=0,an+1=an+2
+1
(1)求證數(shù)列{
}是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn=
,求數(shù)列{b}的前n項(xiàng)的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面
是不重合的兩個(gè)面,下列命題中,所有正確命題的序號(hào)是_____.
①若
,
分別是平面
的法向量,則
;
②若
,
分別是平面
,
的法向量,則
;
③若
是平面
的法向量,
與
共面,則
;
④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷(xiāo)一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
![]()
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為S元.試問(wèn)銷(xiāo)售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)的推廣給消費(fèi)者帶來(lái)全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問(wèn)題,為了了解公眾對(duì)共享單車(chē)的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對(duì)不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
![]()
并且,年齡在
和
的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見(jiàn).
(Ⅰ)求年齡在
中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在
中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為
. (Ⅰ)求圓C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)設(shè)M是直線(xiàn)l上任意一點(diǎn),過(guò)M做圓C切線(xiàn),切點(diǎn)為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E:
(a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com