【題目】已知函數(shù)f(x)=loga
,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.
【答案】
(1)
解:f(x)=loga
為奇函數(shù),下面證明:
解
>0可得定義域為{x|x<﹣5或x>5},關(guān)于原點(diǎn)對稱,
f(﹣x)=loga
=﹣loga
=﹣f(x),
∴函數(shù)f(x)為奇函數(shù)
(2)
解:假設(shè)存在這樣的m,則f(x+2)+f(m﹣x)
=loga
=loga
,
∴
為常數(shù),設(shè)為k,
則(k﹣1)x2+(m﹣2)(1﹣k)x﹣3(m﹣5)﹣7k(m+5)=0對定義域內(nèi)的x恒成立
∴
,解得 ![]()
∴存在這樣的m=﹣2
【解析】(1)f(x)=loga
為奇函數(shù),求函數(shù)的定義域并利用奇函數(shù)的定義證明即可;(2)假設(shè)存在這樣的m,則f(x+2)+f(m﹣x)=loga
,即
為常數(shù),設(shè)為k,整理由多項式系數(shù)相等可得m和k的方程組,解方程組可得.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )![]()
A.向左平移
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變
B.向左平移
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變
D.向左平移
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線x2﹣
=1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a5=9,a7=13,等比數(shù)列{bn}的通項公式bn=2n﹣1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an+bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時,數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.
(I)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥平面ABC;
(Ⅱ)已知EF=FB=
AC=2
,AB=BC,求二面角F﹣BC﹣A的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga
,(a>0,且a≠1),
(1)求函數(shù)f(x)的定義域.
(2)求使f(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,![]()
(1)求A的大小;
(2)若a=7,求△ABC的周長的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=
,an+1=
,n=1,2,…
(1)求證:{
﹣1}是等比數(shù)列,并求出{an}的通項公式;
(2)證明:對任意的x>0,an≥
﹣
(
﹣x),n=1,2,…
(3)證明:n﹣
≥a1+a2+…+an>
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com