如圖所示,
為圓
的切線,
為切點(diǎn),![]()
,![]()
的角平分線與
和圓
分別交于點(diǎn)
和
.![]()
(1)求證
(2)求
的值.
(1)證明過(guò)程詳見解析;(2)
.
解析試題分析:本題以圓為幾何背景考查線和線的關(guān)系以及相似三角形的證明,考查學(xué)生的轉(zhuǎn)化和化歸能力.第一問(wèn),利用已知證明
,所以通過(guò)相似三角形的性質(zhì)得
;第二問(wèn),先利用圓的切割線定理得
,所以得
的長(zhǎng),在
中利用勾股定理求出
的長(zhǎng),通過(guò)上述條件證明
,得到
,所以得出
的值.
試題解析:(1)∵
為圓
的切線,
又
為公共角,![]()
4分
(2)∵
為圓
的切線,
是過(guò)點(diǎn)
的割線, ![]()
又∵
又由(1)知
,連接
,則![]()
,
.10分
考點(diǎn):1.三角形相似;2.勾股定理;3.切割線的性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),DC是∠ACB的平分線交AE于點(diǎn)F,交AB于D點(diǎn).![]()
(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB和BC分別與圓O相切于點(diǎn)D,C,AC經(jīng)過(guò)圓心O,且BC=2OC.求證:AC=2AD.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,點(diǎn)
為銳角
的內(nèi)切圓圓心,過(guò)點(diǎn)
作直線
的垂線,垂足為
,圓
與邊
相切于點(diǎn)
.若
,求
的度數(shù).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,C是以AB為直徑的半圓O上的一點(diǎn),過(guò)C的直線交直線AB于E,交過(guò)A點(diǎn)的切線于D,BC∥OD.![]()
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何證明選講.
如圖,直線
過(guò)圓心
,交⊙
于
,直線
交⊙
于
(不與
重合),直線
與⊙
相切于
,交
于
,且與
垂直,垂足為
,連結(jié)
.![]()
求證:(1)
;
(2)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過(guò)C作圓O的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓O交于點(diǎn)D,E,求線段AE的長(zhǎng).![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com