已知數(shù)列
的各項均為正數(shù),其前
項和為
,且
.
⑴求證:數(shù)列
是等差數(shù)列;
⑵設(shè)
,求證:
;
⑶設(shè)
,
,求
.
(1)詳見解析;(2)詳見解析;(3)![]()
解析試題分析:(1)一般數(shù)列問題中出現(xiàn)數(shù)列前
的和
與其項
時,則可利用關(guān)系
找出數(shù)列的遞推關(guān)系,本題可從此入手,證明數(shù)列為等差數(shù)列;(2)由(1)可求出
,根據(jù)此式的結(jié)構(gòu)特征,可得
,利用裂項相消法求其前
的和
后再予以判斷;(3)根據(jù)數(shù)列
的結(jié)構(gòu)特點(等差乘等比型)可用錯位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過對所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯位相減法,使用這個方法在計算上要有耐心和細(xì)心,注意各項的符號,防止出錯.
試題解析:⑴證明:
,當(dāng)
時,
或
,又
. 1分
由
,得
,![]()
![]()
數(shù)列
是以1為首項,1為公差的等差數(shù)列; 4分
⑵證明:由⑴知
,
,![]()
. 8分
⑶
,
, ①
②
由①-②得
,
. 12分
考點:等差數(shù)列、等比數(shù)列、錯位相減法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項均為正數(shù)的數(shù)列
中,
是數(shù)列
的前
項和,對任意
,有
.
(1)求數(shù)列
的通項公式;
(2)記
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前
項和為
,且
是
和
的等差中項,等差數(shù)列
滿足
,
.
(1)求數(shù)列
、
的通項公式;
(2)設(shè)
,數(shù)列
的前
項和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和
,滿足:
.
(Ⅰ)求數(shù)列
的通項
;
(Ⅱ)若數(shù)列
的滿足
,
為數(shù)列
的前
項和,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前n項和為
,且
=-n
+20n,n∈N
.
(Ⅰ)求通項
;
(Ⅱ)設(shè)
是首項為1,公比為3的等比數(shù)列,求數(shù)列
的通項公式及其前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前n項和為
,點
在直線
上.數(shù)列{bn}滿足![]()
,前9項和為153.
(Ⅰ)求數(shù)列
、
的通項公式;
(Ⅱ)設(shè)
,數(shù)列
的前n和為
,求使不等式
對一切
都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
滿足
,![]()
;
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
,并求當(dāng)
最大時序號
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和為
,且有
,![]()
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)若
,求數(shù)列
的前
項和
;
(Ⅲ)若
,且數(shù)列
中的 每一項總小于它后面的項,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com