已知橢圓
:
(
)的右焦點
,右頂點
,右準線
且
.![]()
(1)求橢圓
的標準方程;
(2)動直線
:
與橢圓
有且只有一個交點
,且與右準線相交于點
,試探究在平面直角坐標系內是否存在點
,使得以
為直徑的圓恒過定點
?若存在,求出點
坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線
與橢圓相交于不同的兩點A,B。已知點A的坐標為
。若
,求直線
的傾斜角。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
矩形
的中心在坐標原點,邊
與
軸平行,
=8,
=6.
分別是矩形四條邊的中點,
是線段
的四等分點,
是線段
的四等分點.設直線
與
,
與
,
與
的交點依次為
.![]()
(1)求以
為長軸,以
為短軸的橢圓Q的方程;
(2)根據條件可判定點
都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段
的
(
等分點從左向右依次為
,線段
的
等分點從上向下依次為
,那么直線
與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
直線
與圓
相切,且交橢圓
于
兩點,
是橢圓的半焦距,
,
(Ⅰ)求
的值;
(Ⅱ)O為坐標原點,若
求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設橢圓
的左右頂點分別為A,B,動點
,直線AS,BS與直線
分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知圓心坐標為
的圓
與
軸及直線
均相切,切點分別為
、
,另一圓
與圓
、
軸及直線
均相切,切點分別為
、
.![]()
(1)求圓
和圓
的方程;
(2)過
點作
的平行線
,求直線
被圓
截得的弦的長度;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線
的焦點為
,準線為
,
,以
為圓心的圓
與
相切于點
,
的縱坐標為
,
是圓
與
軸除
外的另一個交點.
(I)求拋物線
與圓
的方程;
( II)已知直線
,
與
交于
兩點,
與
交于點
,且
, 求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖已知拋物線
的焦點坐標為
,過
的直線交拋物線
于
兩點,直線
分別與直線
:
相交于
兩點.![]()
(1)求拋物線
的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點
與圓
相切的直線
與
的另一交點為
,且
的面積為
,求橢圓
的方程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com