【題目】設數列{an}滿足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通項公式;
(2)求數列{
}的前n項和.
【答案】
(1)
解:數列{an}滿足a1+3a2+…+(2n﹣1)an=2n.
n≥2時,a1+3a2+…+(2n﹣3)an﹣1=2(n﹣1).
∴(2n﹣1)an=2.∴an=
.
當n=1時,a1=2,上式也成立.
∴an=
.
(2)![]()
=
=
﹣
.
∴數列{
}的前n項和=
+
. +…+
=1﹣
=
.
【解析】(1)利用數列遞推關系即可得出.(2)
=
=
﹣
.利用裂項相消求和方法即可得出.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系
),還要掌握數列的通項公式(如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區調查了100位育齡婦女,結果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
|
|
|
|
|
|
|
|
|
|
由
算得,
,
參照附表,得到的正確結論是
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關”
C. 有99%以上的把握認為“生育意愿與城市級別有關”
D. 有99%以上的把握認為“生育意愿與城市級別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l1的參數方程為
,(t為參數),直線l2的參數方程為
,(m為參數).設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(Ⅰ)寫出C的普通方程;
(Ⅱ)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ)﹣
=0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的公差d≠0滿足
成等比數列,若
=1,Sn是{
}的前n項和,則
的最小值為________.
【答案】4
【解析】
成等比數列,
=1,可得:
=
,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入
利用分離常數法化簡后,利用基本不等式求出式子的最小值.
∵
成等比數列,a1=1,
∴
=
,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+
×2=n2.
∴
=
=n+1+
﹣2≥2
﹣2=4,
當且僅當n+1=
時取等號,此時n=2,且
取到最小值4,
故答案為:4.
【點睛】
本題考查了等差數列的通項公式、前n項和公式,等比中項的性質,基本不等式求最值,在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數)、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現錯誤.
【題型】填空題
【結束】
17
【題目】設
是公比為正數的等比數列,
,![]()
(1)求
的通項公式;
(2)設
是首項為1,公差為2的等差數列,求數列
的前
項和![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點,點C的坐標為(0,1),當m變化時,解答下列問題:(12分)
(1)能否出現AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,D是BC上一點,AB=31,BD=20,AD=21. ![]()
(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數方程為
(t為參數,0<α<π),以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=
(p>0).
(Ⅰ)寫出直線l的極坐標方程和曲線C的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,求
+
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.
![]()
.求證:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于向量a,b,e及實數x,y,x1,x2,
,給出下列四個條件:
①
且
; ②![]()
③
且
唯一; ④![]()
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com