如圖,橢圓C:
+
=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1與C2相交于直線y=
x上一點P.![]()
(1)求橢圓C及拋物線C1,C2的方程.
(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-
,0),求
·
的最小值.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知圓P在x軸上截得線段長為2
,在y軸上截得線段長為2
.
(1)求圓心P的軌跡方程;
(2)若P點到直線y=x的距離為
,求圓P的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
過點P(1,
),其左、右焦點分別為F1,F2,離心率e=
, M, N是直線x=4上的兩個動點,且
·
=0.![]()
(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過定點?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓C:
+
=1(a>b>0),稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(
,0),其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”的方程.
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,且l1,l2分別交其“準圓”于點M,N.
①當P為“準圓”與y軸正半軸的交點時,求l1,l2的方程;
②求證:|MN|為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP0,垂足為P0,且
=![]()
.
(1)求點M的軌跡C的方程;
(2)設直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點A,B.
若直線OA,AB,OB的斜率成等比數列,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使|
|=|
|?若存在,求出D點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
,右焦點
到直線
的距離為
.
(1)求橢圓
的方程;
(2)過橢圓右焦點F2斜率為
(
)的直線
與橢圓
相交于
兩點,
為橢圓的右頂點,直線
分別交直線
于點
,線段
的中點為
,記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直線
,拋物線
,已知點
在拋物線
上,且拋物線
上的點到直線
的距離的最小值為
.![]()
(1)求直線
及拋物線
的方程;
(2)過點
的任一直線(不經過點
)與拋物線
交于
、
兩點,直線
與直線
相交于點
,記直線
,
,
的斜率分別為
,
,
.問:是否存在實數
,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com