已知二次函數f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤
.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數g(x)=f(x)-mx (x∈R)是單調函數,求證:m≤0或m≥1.
科目:高中數學 來源: 題型:解答題
如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設
.![]()
(1)試用
表示
的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=3x-
.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調性;
(3)若3tf(2t)+mf(t)≥0對于t∈
恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度
(單位:cm)滿足關系:
(
,
為常數),若不建隔熱層,每年能源消耗費用為8萬元.設
為隔熱層建造費用與20年的能源消耗費用之和.
(1)求
的值及
的表達式;
(2)隔熱層修建多厚時,總費用
達到最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)的圖象與函數h(x)=x+
+2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區間[0,2]上為減函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了尋找馬航
殘骸,我國“雪龍號”科考船于2014年3月26日從港口
出發,沿北偏東
角的射線
方向航行,而在港口北偏東
角的方向上有一個給科考船補給物資的小島
,
海里,且![]()
.現指揮部需要緊急征調位于港口
正東
海里的
處的補給船,速往小島
裝上補給物資供給科考船.該船沿
方向全速追趕科考船,并在
處相遇.經測算當兩船運行的航線與海岸線
圍成的三角形
的面積
最小時,這種補給方案最優.![]()
(1)求
關于
的函數關系式
;
(2)應征調位于港口正東多少海里處的補給船只,補給方案最優?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,
.
(1)求
的取值范圍,使
在閉區間
上是單調函數;
(2)當
時,函數
的最大值是關于
的函數
.求
;
(3)求實數
的取值范圍,使得對任意的![]()
,恒有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某通訊公司需要在三角形地帶
區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域
內,乙中轉站建在區域
內.分界線
固定,且
=
百米,邊界線
始終過點
,邊界線
滿足
.
設
(
)百米,
百米.![]()
(1)試將
表示成
的函數,并求出函數
的解析式;
(2)當
取何值時?整個中轉站的占地面積
最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經市場調查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=
t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系式;
(2)求日銷售額S的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com