已知點(diǎn)
是直線![]()
上一動(dòng)點(diǎn),
是圓C:
的兩條切線,A、B是切點(diǎn),若四邊形
的最小面積是2,則
的值為?
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的圓心在坐標(biāo)原點(diǎn),且與直線
相切
(1)求直線
被圓C所截得的弦AB的長.
(2)過點(diǎn)G(1,3)作兩條與圓C相切的直線,切點(diǎn)分別為M,N求直線MN的方程
(3)若與直線l1垂直的直線l與圓C交于不同的兩點(diǎn)P,Q,若∠POQ為鈍角,求直線l縱截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓心為
的圓經(jīng)過點(diǎn)
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若直線
過點(diǎn)
且被圓
截得的線段長為
,求直線
的方程;
(3)是否存在斜率是1的直線
,使得以
被圓
所截得的弦EF為直徑的圓經(jīng)過
原點(diǎn)?若存在,試求出直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長為4
,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓G:
+y2=1.過
軸上的動(dòng)點(diǎn)
(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線
的最大距離;
(2)①當(dāng)實(shí)數(shù)
時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是橢圓
上兩點(diǎn),點(diǎn)M的坐標(biāo)為
.
(1)當(dāng)
兩點(diǎn)關(guān)于
軸對(duì)稱,且
為等邊三角形時(shí),求
的長;
(2)當(dāng)
兩點(diǎn)不關(guān)于
軸對(duì)稱時(shí),證明:
不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓
內(nèi)有一點(diǎn)
,
為過點(diǎn)
且傾斜角為
的弦.![]()
(1)當(dāng)
時(shí),求
;
(2)當(dāng)弦
被點(diǎn)
平分時(shí),求出直線
的方程;
(3)設(shè)過
點(diǎn)的弦的中點(diǎn)為
,求點(diǎn)
的坐標(biāo)所滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若直線3x+4y+m=0與圓![]()
(θ為參數(shù))沒有公共點(diǎn),
則實(shí)數(shù)m的取值范圍是_____________。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com