已知橢圓中心在原點,焦點在
軸上,焦距為2,離心率為![]()
(1)求橢圓的方程;
(2)設直線
經過點
(0,1),且與橢圓交于
兩點,若
,求直線
的方程.
(1)
;(2)
或
.
解析試題分析:本題主要考查橢圓的標準方程和幾何性質、直線的方程等基礎知識,考查用代數法研究圓錐曲線的性質,考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經過(0,1)點,所以先設出直線方程,與橢圓聯立,消參得到關于x的方程,先設出
點坐標,通過方程得到兩根之和、兩根之積,再由
,得出
,聯立上述表達式得k的值,從而得到直線方程.
試題解析:(1)設橢圓方程為
,
因為
,所以
,
所求橢圓方程為
4分
(2)由題得直線
的斜率存在,設直線
方程為![]()
則由
得
,
設
,則由
得
..8分
又
,
所以
消去
得![]()
解得![]()
所以直線
的方程為
,即
或
12分
考點:1.橢圓的標準方程;2.直線方程;3.韋達定理.
科目:高中數學 來源: 題型:解答題
已知
、
為橢圓
的左、右焦點,且點
在橢圓
上.
(1)求橢圓
的方程;
(2)過
的直線
交橢圓
于
兩點,則
的內切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為
,準線為
,點
為拋物線C上的一點,且
的外接圓圓心到準線的距離為
.![]()
(I)求拋物線C的方程;
(II)若圓F的方程為
,過點P作圓F的2條切線分別交
軸于點
,求
面積的最小值時
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知定點
、
,動點N滿足
(O為坐標原點),
,
,
,求點P的軌跡方程.![]()
(2)如圖,已知橢圓
的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,![]()
(ⅰ)設直線
的斜率分別為
、
,求證:
為定值;
(ⅱ)當點
運動時,以
為直徑的圓是否經過定點?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求
·
的值;
(2)如果
·
=-4,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線
與橢圓相交于不同的兩點A,B。已知點A的坐標為
。若
,求直線
的傾斜角。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線
的焦點為
,準線為
,
,以
為圓心的圓
與
相切于點
,
的縱坐標為
,
是圓
與
軸除
外的另一個交點.
(I)求拋物線
與圓
的方程;
( II)已知直線
,
與
交于
兩點,
與
交于點
,且
, 求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com