【題目】我國加入WTO時,根據(jù)達成的協(xié)議,某產(chǎn)品的市場供應(yīng)量P與市場價格x的關(guān)系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關(guān)銳的稅率,且t∈[0,
),x為市場價格,b、k為正常數(shù)).當(dāng)t=
時的市場供應(yīng)量曲線如圖所示.
![]()
(1)根據(jù)圖象求b、k的值;
(2)記市場需求量為Q,它近似滿足Q(x)=
,當(dāng)P=Q時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若
,則
;
②已知
,
,且
與
的夾角為銳角,則實數(shù)
的取值范圍是
;
③已知
是平面上一定點,
是平面上不共線的三個點,動點
滿足
,
,則
的軌跡一定通過
的重心;
④在
中,
,邊長
分別為
,則
只有一解;
⑤如果△ABC內(nèi)接于半徑為
的圓,且![]()
則△ABC的面積的最大值
;
其中正確的序號為_______________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
有是實數(shù)解時,求實數(shù)
的取值范圍;
(2)若
,對一切
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=
cosωx+1,2sinωx,b=
cosωx-
,cosωx), ω>0.
(Ⅰ)當(dāng)ωx≠kπ+
,k∈Z時,若向量c=(1,0),d=(
,0),且(a-c)∥(b+d),求4sin2ωx-cos2ωx的值;
(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對稱軸之間的距離為
,當(dāng)x∈[
],g時,求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx(a為實常數(shù))
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
,
,
,
在等差數(shù)列
中,
,
用
表示數(shù)列
的前2018項的和,則( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園為訓(xùn)練孩子的數(shù)字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機變量X的分布列及數(shù)學(xué)期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象與
軸的交點中相鄰兩個交點的距離是
,當(dāng)
時
取得最小值
.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
在區(qū)間
的最大值和最小值;
(3)若函數(shù)
的零點為
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com