【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)
件,需另投入成本為
(萬元).當月產(chǎn)量不足30件時,
(萬元);當月產(chǎn)量不低于30件時,
(萬元).因設(shè)備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產(chǎn)的商品都能當月全部銷售完.
(1)寫出月利潤
(萬元)關(guān)于月產(chǎn)量
(件)的函數(shù)解析式;
(2)當月產(chǎn)量為多少件時,該廠所獲月利潤最大?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是橢圓
的左、右焦點,
為坐標原點,點
在橢圓上,線段
與
軸的交點
滿足
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓
是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點
、
,當
,且滿足
時,求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次電影展映活動中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計一隨機抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有
的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.
(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列
列聯(lián)表
![]()
(Ⅱ)能否在犯錯誤的概率不超過0.01的前提下,認為選擇影片類型與性別有關(guān)?
附:
| … | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| … | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個水平放置的正三棱柱
,
是棱
的中點,正三棱柱的主視圖如圖(2).
(1)圖(1)中垂直于平面
的平面有哪幾個(直接寫出符合要求的平面即可,不必說明或證明)
(2)求正三棱柱
的體積;
(3)證明:
平面
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的
城市和交通擁堵嚴重的
城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
![]()
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此
列聯(lián)表,并據(jù)此樣本分析是否有
的把握認為城市擁堵與認可共享單車有關(guān):
|
| 合計 | |
認可 | |||
不認可 | |||
合計 |
附:參考數(shù)據(jù):(參考公式:
)
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細心程度的關(guān)系,在本校隨機調(diào)查了100名學(xué)生進行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成
列聯(lián)表;
數(shù)學(xué)成績及格 | 數(shù)學(xué)成績不及格 | 合計 | |
比較細心 | 45 | ||
比較粗心 | |||
合計 | 60 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學(xué)生的數(shù)學(xué)成績與細心程度有關(guān)系?
參考數(shù)據(jù):獨立檢驗隨機變量
的臨界值參考表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為自然對數(shù)的底數(shù)),
是
的導(dǎo)函數(shù).
(Ⅰ)當
時,求證
;
(Ⅱ)是否存在正整數(shù)
,使得
對一切
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程是
(
為參數(shù)).以坐標原點
為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)設(shè)點
,若直線
與曲線
交于
,
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
是自然對數(shù)的底數(shù).
(1)若
在
上為單調(diào)函數(shù),求實數(shù)
的取值范圍;
(2)若
,求證:
有唯一零點的充要條件是
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com