(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經過兩點
;
(2)經過點(2,-3)且與橢圓
具有共同的焦點.
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知拋物線
的頂點為坐標原點,焦點在
軸上. 且經過點
,
(1)求拋物線
的方程;
(2)若動直線
過點
,交拋物線
于
兩點,是否存在垂直于
軸的直線
被以
為直徑的圓截得的弦長為定值?若存在,求出
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知橢圓E:
=1(a>b>o)的離心率e=
,且經過點(
,1),O為坐標原點。![]()
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓![]()
的離心率為
,定點
,橢圓短軸的端點是
,
,且
.
(1)求橢圓
的方程;
(2)設過點
且斜率不為
的直線交橢圓
于
,
兩點.試問
軸上是否存在定點
,使
平分
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓O:
交
軸于A,B兩點,曲線C是以
為長軸,離心率為
的橢圓,其左焦點為F.若P是圓O上一點連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.![]()
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓
相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為
,線段
的中點分別為
,且△
是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標準方程;
(Ⅱ)過
做直線
交橢圓于P,Q兩點,使
,求直線
的方程.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
已知橢圓C:
(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分15分)已知橢圓
經過點
,其離心率為
.
(1) 求橢圓
的方程;
(2)設直線
與橢圓
相交于
兩點,以線段
為鄰邊作平行四邊形
,其中頂點
在橢圓
上,
為坐標原點.求
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com