【題目】為打贏打好脫貧攻堅(jiān)戰(zhàn),實(shí)現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計(jì)劃建造一個(gè)室內(nèi)面積為
平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個(gè)大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留
米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長(zhǎng)度為
米,如圖所示.
![]()
(1)將兩個(gè)養(yǎng)殖池的總面積
表示
為的函數(shù),并寫(xiě)出定義域;
(2)當(dāng)溫室的邊長(zhǎng)
取何值時(shí),總面積
最大?最大值是多少?
【答案】(1)
,定義域?yàn)?/span>
;(2)當(dāng)溫室的邊長(zhǎng)
為30米時(shí),總面積
取最大值為1215平方米.
【解析】
(1)依題意得溫室的另一邊長(zhǎng)為
米.求出養(yǎng)殖池的總面積
,然后求解函數(shù)的定義域即可.(2)
,利用基本不等式求解函數(shù)的最值即可.
(1)依題意得溫室的另一邊長(zhǎng)為
米.
因此養(yǎng)殖池的總面積
,
因?yàn)?/span>
,
,所以
.
所以定義域?yàn)?/span>
.
(2)![]()
![]()
,
當(dāng)且僅當(dāng)
,即
時(shí)上式等號(hào)成立,
當(dāng)溫室的邊長(zhǎng)
為30米時(shí),總面積
取最大值為1215平方米.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若關(guān)于
的不等式
在
上恒成立,求
的取值范圍;
(2)設(shè)函數(shù)
,若
在
上存在極值,求
的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
在橢圓
上,動(dòng)點(diǎn)
都在橢圓上,且直線
不經(jīng)過(guò)原點(diǎn)
,直線
經(jīng)過(guò)弦
的中點(diǎn).
(1)求橢圓
的方程和直線
的斜率;
(2)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. “f(0)
”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:
,
,則
:
,![]()
C. “若
,則
”的否命題是“若
,則
”
D. 若
為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的左焦點(diǎn)為
,離心率為
,
為圓
的圓心.
(1)求橢圓的方程;
(2)已知過(guò)橢圓右焦點(diǎn)
的直線
交橢圓于
兩點(diǎn),過(guò)
且與
垂直的直線
與圓
交于
兩點(diǎn),求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為等差數(shù)列,且
,其前8項(xiàng)和為52,
是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足
,
.
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)令
,數(shù)列
的前
項(xiàng)和為
,若對(duì)任意正整數(shù)
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
(
為自然對(duì)數(shù)的底數(shù))時(shí),求
的最小值;
(2)討論函數(shù)
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
的單調(diào)區(qū)間;
(2)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左右焦點(diǎn)分別為
,
,左頂點(diǎn)為
,點(diǎn)
在橢圓
上,且
的面積為
.
(1)求橢圓
的方程;
(2)過(guò)原點(diǎn)
且與
軸不重合的直線交橢圓
于
,
兩點(diǎn),直線
分別與
軸交于點(diǎn)
,
,.求證:以
為直徑的圓恒過(guò)交點(diǎn)
,
,并求出
面積的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com