已知圓C過(guò)原點(diǎn)且與
相切,且圓心C在直線
上.
(1)求圓的方程;(2)過(guò)點(diǎn)
的直線l與圓C相交于A,B兩點(diǎn), 且
, 求直線l的方程.
(1)
(2) x=2或4x-3y-2=0.
解析試題分析:(1)由題意圓心到直線
的距離等于半徑, 再利用點(diǎn)到直線的距離公式解出圓心坐標(biāo)和半徑即可.(2)由題知,圓心到直線l的距離為1.分類討論:當(dāng)l的斜率不存在時(shí),l:x=2顯然成立 ;若l的斜率存在時(shí), 利用點(diǎn)到直線的距離公式,解得k ;綜上,直線l的方程為x=2或4x-3y-2=0.
(1)由題意設(shè)圓心
,則C到直線
的距離等于
,
, 解得
, ∴其半徑
∴圓
的方程為
(6分)
(2)由題知,圓心C到直線l的距離
. (8分)
當(dāng)l的斜率不存在時(shí),l:x=2顯然成立 (9分)
若l的斜率存在時(shí),設(shè)
,由
得
,解得
,
∴
. (11分)
綜上,直線l的方程為x=2或4x-3y-2=0. (12分)
考點(diǎn):圓的方程;點(diǎn)到直線的距離公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的圓心在坐標(biāo)原點(diǎn),且與直線
相切
(1)求直線
被圓C所截得的弦AB的長(zhǎng).
(2)過(guò)點(diǎn)G(1,3)作兩條與圓C相切的直線,切點(diǎn)分別為M,N求直線MN的方程
(3)若與直線l1垂直的直線l與圓C交于不同的兩點(diǎn)P,Q,若∠POQ為鈍角,求直線l縱截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
過(guò)點(diǎn)
,
,并且直線
平分圓的面積.
(1)求圓
的方程;
(2)若過(guò)點(diǎn)
,且斜率為
的直線
與圓
有兩個(gè)不同的公共點(diǎn)
.
①求實(shí)數(shù)
的取值范圍; ②若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓心為
的圓經(jīng)過(guò)點(diǎn)
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若直線
過(guò)點(diǎn)
且被圓
截得的線段長(zhǎng)為
,求直線
的方程;
(3)是否存在斜率是1的直線
,使得以
被圓
所截得的弦EF為直徑的圓經(jīng)過(guò)
原點(diǎn)?若存在,試求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C經(jīng)過(guò)P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4
,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓心為C的圓經(jīng)過(guò)點(diǎn)
和
,且圓心C在直線
:
上,求圓心為C的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P、Q兩點(diǎn),![]()
M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C;
(2)當(dāng)PQ=2
時(shí),求直線l的方程;
(3)探索
·
是否與直線l的傾斜角有關(guān)?若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com