已知
是定義在
上的增函數(shù),且對任意的
都滿足
.
(Ⅰ)求
的值; (Ⅱ)若
,證明
;
(Ⅲ)若
,解不等式
.
(Ⅰ)0,(Ⅱ)對任意的
,據(jù)已知條件有
,
即
,
. (Ⅲ)
.
解析試題分析:(Ⅰ)在已知等式中,令
得
. 3分
(Ⅱ)對任意的
,據(jù)已知條件有
,即
,
. 6分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/c/1bakg4.png" style="vertical-align:middle;" />的定義域是
,
,
由(Ⅱ)的結(jié)論可知
,所以不等式
可化為
, 9分
又因?yàn)楹瘮?shù)在
上是增函數(shù),上式又可化為
,
即
,解得
,
所以,原不等式的解集為
. 12分
考點(diǎn):本題考查了抽象函數(shù)的求值及不等式
點(diǎn)評:對于抽象函數(shù)滿足的關(guān)系式問題,應(yīng)將所給的關(guān)系式看作是給定的運(yùn)算法則,對某些變量進(jìn)行適當(dāng)?shù)馁x值,并且變量的賦值或變量及數(shù)值的分解與組合都應(yīng)盡量與已知式或所給關(guān)系式及所求的結(jié)果相關(guān)聯(lián)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
是定義域?yàn)镽上的奇函數(shù).
(1)求
的值,并證明當(dāng)
時,函數(shù)
是R上的增函數(shù);
(2)已知
,函數(shù)
,
,求
的值域;
(3)若
,試問是否存在正整數(shù)
,使得
對
恒成立?若存在,請求出所有的正整數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
鑫隆房地產(chǎn)公司用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為
層,則每平方米的平均建筑費(fèi)用為
(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
有兩個零點(diǎn)
和
,且
最小值是
,函數(shù)
與
的圖象關(guān)于原點(diǎn)對稱;
(1)求
和
的解析式;
(2)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長為60cm的正方形鐵皮的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底邊長為多少時,箱子容積最大?最大容積是多少?![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(Ⅰ)設(shè)
是定義在實(shí)數(shù)集R上的函數(shù),滿足
,且對任意實(shí)數(shù)a,b有
求
;
(Ⅱ)設(shè)函數(shù)
滿足
求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
且關(guān)于
的方程
在
上有兩個不相等的實(shí)數(shù)根.⑴求
的解析式.⑵若
總有
成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知關(guān)于x的方程x2+(m-3)x+m=0
(1)若此方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
(2)若此方程的兩實(shí)數(shù)根之差的絕對值小于
,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com