如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且
G是EF的中
點.![]()
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
(1)先證AG⊥平面CBG (2)![]()
解析試題分析:(1)證.正方形ABCD
,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF
∵AG,GB
面ABEF, ∴CB⊥AG,CB⊥BG.又AD=2a,AF= a, ABEF是矩形,G是EF的中點.
∴AG=BG=
,AB=2a, AB2=AG2+BG2, ∴AG⊥BG,∵BC∩BG=B,∴AG⊥平面CBG,而AG
面AGC,故平
面AGC⊥平面BGC.
(2)解.如圖,由(1)知面AGC⊥面BGC,且交于GC,在平面BGC內作BH⊥GC,垂足為H,則BH⊥平面AGC,
∴∠BGH是GB與平面AGC所成的角.![]()
∴在R t△CBG中![]()
又BG=
,∴
考點:平面與平面垂直的判定;直線與平面所成的角.
點評:本題考查面面垂直的判定方法,以及求線面成的角的求法,體現轉化的思想.
科目:高中數學 來源: 題型:解答題
已知如圖:平行四邊形ABCD中,
,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.![]()
(1)求證:GH∥平面CDE;
(2)若
,求四棱錐F-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE =
,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。![]()
(1)求證:MN⊥EA;
(2)求四棱錐M – ADNP的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,直角梯形
與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.![]()
(1)求直線
與平面
所成角的正弦值;
(2)線段
上是否存在點
,使
// 平面
?若存在,求出
;若不存在,說明理由.1
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,空間四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.![]()
(1)求證:
平面EFGH;
(2)求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四邊形
中,對角線
于
,
,
為
的重心,過點
的直線
分別交
于
且
‖
,沿
將
折起,沿
將
折起,
正好重合于
. ![]()
(Ⅰ) 求證:平面
平面
;
(Ⅱ)求平面
與平面
夾角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知
⊙
所在的平面,AB是⊙
的直徑,
,
是⊙
上一點,且
,
分別為
中點。![]()
(1)求證:
平面
;
(2)求證:
;
(3)求三棱錐
-
的體積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com