【題目】在△ABC中,a,b,c分別是A,B,C的對邊,(2a﹣c)cosB﹣bcosC=0.
(1)求角B的大小;
(2)設(shè)函數(shù)f(x)=2sinxcosxcosB﹣
cos2x,求函數(shù)f(x)的最大值及當(dāng)f(x)取得最大值時x的值.
【答案】
(1)解:正弦定理得sinBcosC=2sinAcosB﹣sinCcosB,
則sin(B+C)=sinA=2sinAcosB.
又sinA≠0,
∴cosB=
,又0<B<π,
∴ ![]()
(2)解:∵f(x)=2sinxcosxcosB﹣
cos2x,
∴
,
當(dāng)
時
,即當(dāng)
時f(x)取最大值1
【解析】(1)由正弦定理化簡已知可得sinA=2sinAcosB,結(jié)合范圍sinA≠0,可得cosB=
,又0<B<π,從而得解B的值.(2)三角函數(shù)恒等變換化簡函數(shù)解析式可得f(x)=sin(2x﹣
),令
即可解得函數(shù)f(x)的最大值及當(dāng)f(x)取得最大值時x的值.
【考點精析】利用正弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足
,若
,則n的最小值為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩曲線f(x)=cosx,g(x)=
sinx,x∈(0,
)相交于點A.若兩曲線在點A處的切線與x軸分別相交于B,C兩點,則線段BC的長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x﹣2y+2與圓C:x2+y2﹣4y+m=0相交,截得的弦長為 ![]()
(1)求圓C的方程;
(2)過點M(﹣1,0)作圓C的切線,求切線的直線方程;
(3)若拋物線y=x2上任意三個不同的點P、Q、R,且滿足直線PQ和PR都與圓C相切,判斷直線QR與圓C的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,以
為極點,
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
為參數(shù)),直線
和圓
交于
兩點,
是圓
上不同于
的任意一點.
(1)求圓心的極坐標(biāo);
(2)求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到M的距離均是到點N距離的
倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l1:x﹣my﹣1=0交曲線E于A,C兩點,直線l2:mx+y﹣m=0交曲線E于B,D兩點,C,D兩點均在x軸下方,求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等邊
的邊長為3,點
分別為
上的點,且滿足
(如圖1),將
沿
折起到
的位置,使二面角
成直二面角,連接
,
(如圖2)
![]()
![]()
(1)求證:
平面
;
(2)在線段
上是否存在點
,使直線
與平面
所成的角為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,2sin2
=sinC+1.
(Ⅰ)求角C的大小;
(Ⅱ)若a=
,c=1,求△ABC的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com