(本題滿分14分)已知圓![]()
.
![]()
(1)直線
:
與圓
相交于
、
兩點(diǎn),求
;
(2)如圖,設(shè)
、
是圓
上的兩個(gè)動(dòng)點(diǎn),點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,如果直線
、
與
軸分別交于
和
,問(wèn)
是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
(1)
(2)分別求出直線
、
,令
可以求得
,進(jìn)而求得![]()
【解析】
試題分析:(1)由圓心到直線的距離公式得
圓心
到直線
的距離
,圓的半徑
,![]()
. ……4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042808365932854361/SYS201304280837267347965543_DA.files/image013.png">,
,
則
,
,
,
. ……8分
:
,得
.
:
,得
. ……12分
![]()
. ……14分
考點(diǎn):本小題主要考查直線與圓的位置關(guān)系的應(yīng)用和直線方程的求解,考查學(xué)生分析問(wèn)題、解決問(wèn)題的能力和運(yùn)算求解能力.
點(diǎn)評(píng):當(dāng)直線與圓相交求弦長(zhǎng)時(shí),要注意半徑、半弦長(zhǎng)和圓心到直線的距離構(gòu)成一個(gè)直角三角形,利用這個(gè)三角形求解可以簡(jiǎn)化計(jì)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知向量
,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對(duì)的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知
,且以下命題都為真命題:
命題
實(shí)系數(shù)一元二次方程
的兩根都是虛數(shù);
命題
存在復(fù)數(shù)
同時(shí)滿足
且
.
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)![]()
(1)若
,求x的值;
(2)若
對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓
:
的離心率為
,過(guò)坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動(dòng)圓
與橢圓
和直線
都沒(méi)有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,
求
的最大值;
![]()
![]()
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com