(本小題共14分)
已知函數(shù)
,其中
.
(Ⅰ)若b>2a,且
的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(Ⅱ)若對(duì)任意實(shí)數(shù)x,不等式
恒成立,且存在
使得
成立,求c的值.
f(x)的最小值為
,c=1
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷文)(本小題共14分)
已知
的頂點(diǎn)
在橢圓
上,
在直線(xiàn)
上,且
.
(Ⅰ)當(dāng)
邊通過(guò)坐標(biāo)原點(diǎn)
時(shí),求
的長(zhǎng)及
的面積;
(Ⅱ)當(dāng)
,且斜邊
的長(zhǎng)最大時(shí),求
所在直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
已知雙曲線(xiàn)
的離心率為
,右準(zhǔn)線(xiàn)方程為![]()
(Ⅰ)求雙曲線(xiàn)
的方程;(Ⅱ)設(shè)直線(xiàn)
是圓
上動(dòng)點(diǎn)
處的切線(xiàn),
與雙曲線(xiàn)
交于不同的兩點(diǎn)
,證明
的大小為定值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市宣武區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本小題共14分)
已知
,動(dòng)點(diǎn)
到定點(diǎn)![]()
的距離比
到定直線(xiàn)
的距離小
.
(I)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)
是軌跡
上異于原點(diǎn)
的兩個(gè)不同點(diǎn),
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點(diǎn)
關(guān)于直線(xiàn)
對(duì)稱(chēng)?若存在,求出直線(xiàn)
的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
((本小題共14分)
已知橢圓
.過(guò)點(diǎn)(m,0)作圓
的切線(xiàn)l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共14分)
已知點(diǎn)
,
,動(dòng)點(diǎn)P滿(mǎn)足
,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線(xiàn)
與曲線(xiàn)W交于不同的兩點(diǎn)C,D,若存在點(diǎn)
,使得
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com