如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD
平面ABCD,EF∥AB, AB=2EF=2AD=4,
.![]()
(Ⅰ)求證:BF
AD;
(Ⅱ)求直線BD與平面BCF所成角的大小.
(Ⅰ)先證
平面EGH從而得到BF
AD (Ⅱ)![]()
解析試題分析:(Ⅰ)設AB的中點為H,連接EH,因為AB=2EF,且EF∥AB,所以四邊形EHBF是平行四邊形,取AD的中點G,正△EAD,則
,連接GH,在△AGH中,AH=2AG=2,
.故
,即
,所以
平面EGH,所以
,又因為BF∥EH,所以BF
AD
(Ⅱ)由(Ⅰ)BF
AD,在平行四邊形ABCD中,BC∥AD,所以BC⊥BF;又GH⊥AD, BD∥GH ,所以BD ⊥AD,而BC∥AD,故BC⊥BD,所以BC⊥平面DFB,BC
平面BCF,所以平面BCF⊥平面DFB,所以點D在平面BCF上的射影P點在BF上,所以∠FBD就是直線BD與平面BCF所成的角,在△BFD中, BF=HE=
,又BC⊥平面DFB,所以,平面FBD⊥面ABCD,故F點在平面ABCD上的射影K在BD上,且FK=EG=
,所以
,故求直線BD與平面BCF所成角是
.
考點:直線與平面所成的角;空間中直線與直線之間的位置關系.
點評:本題主要考查直線與平面垂直、直線與平面所成的角等基礎知識,考查空間想象能力、運算能力、推理論證能力.
科目:高中數學 來源: 題型:解答題
如圖,
是以
為直徑的半圓上異于
、
的點,矩形
所在的平面垂直于該半圓所在的平面,且
.![]()
(Ⅰ)求證:
;
(Ⅱ)設平面
與半圓弧的另一個交點為
.
①試證:
;
②若
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐
中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點.![]()
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方體ABCD—A1B1C1D1中,E為AB中點,F為正方形BCC1B1的中心.![]()
(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=![]()
![]()
(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com