已知
,當(dāng)
時(shí),
.
(1)證明:
;
(2)若
成立,請(qǐng)先求出
的值,并利用
值的特點(diǎn)求出函數(shù)
的表達(dá)式.
(1)詳見解析;(2)
.
解析試題分析:(1)根據(jù)題中條件并利用
得到
;(2)先利用題中條件得到
,并結(jié)合
得到
的取值范圍,結(jié)合(1)中的結(jié)論求出
值,然后借助題中條件分析出函數(shù)是
的圖象關(guān)于
軸對(duì)稱,從而求出
與
的值,從而最終確定函數(shù)
的解析式.
試題解析:(1)
時(shí) ![]()
4分
(2)由
得到![]()
5分
又
時(shí)
即![]()
將
代入上式得
又 ![]()
8分
又
時(shí)![]()
![]()
對(duì)
均成立
為函數(shù)
為對(duì)稱軸 10分
又![]()
12分
13分
考點(diǎn):1.函數(shù)不等式;2.二次函數(shù)的對(duì)稱性
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/d/xpk2x1.png" style="vertical-align:middle;" />,且同時(shí)滿足以下三個(gè)條件:①
;②對(duì)任意的
,都有
;③當(dāng)
時(shí)總有
.
(1)試求
的值;
(2)求
的最大值;
(3)證明:當(dāng)
時(shí),恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
為實(shí)數(shù),函數(shù)
。
(1)若
,求
的取值范圍;
(2)求
的最小值;
(3)設(shè)函數(shù)
,直接寫出(不需給出演算步驟)不等式
的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:
,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)
為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及
的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用
達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)
為偶函數(shù),且在區(qū)間
上是單調(diào)增函數(shù)
(1)求函數(shù)
的解析式;
(2)設(shè)函數(shù)
,其中
.若函數(shù)
僅在
處有極值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
.若
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/3/cu2t03.png" style="vertical-align:middle;" />,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,一個(gè)半圓和長(zhǎng)方形組成的鐵皮,長(zhǎng)方形的邊
為半圓的直徑,
為半圓的圓心,
,
,現(xiàn)要將此鐵皮剪出一個(gè)等腰三角形
,其底邊
.![]()
(1)設(shè)
,求三角形鐵皮
的面積;
(2)求剪下的鐵皮三角形
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(I)求函數(shù)
的最小值;
(II)對(duì)于函數(shù)
和
定義域內(nèi)的任意實(shí)數(shù)
,若存在常數(shù)
,使得不等式
和
都成立,則稱直線
是函數(shù)
和
的“分界線”.
設(shè)函數(shù)
,![]()
,試問函數(shù)
和
是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com