【題目】設(shè)數(shù)列{an}的前n項(xiàng)和是Sn , 若點(diǎn)An(n,
)在函數(shù)f(x)=﹣x+c的圖象上運(yùn)動(dòng),其中c是與x無關(guān)的常數(shù),且a1=3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=a
,求數(shù)列{bn}的前n項(xiàng)和Tn的最小值.
【答案】
(1)解:∵點(diǎn)An(n,
)在函數(shù)f(x)=﹣x+c的圖象上運(yùn)動(dòng),其中c是與x無關(guān)的常數(shù),且a1=3(n∈N*).
∴
=﹣n+c,即Sn=﹣n2+cn,
∴n=1時(shí),a1=S1=﹣1+c=3,解得c=4.
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=﹣n2+4n﹣[﹣(n﹣1)2+4(n﹣1)]=﹣2n+5,n=1時(shí)也成立.
∴an=﹣2n+5.
(2)解:bn=a
=a﹣2n+5=﹣2(﹣2n+5)+5=4n﹣5.
∴n=1時(shí),b1=﹣1<0;
n≥2時(shí),bn>0.
因此,當(dāng)n=1時(shí),數(shù)列{bn}的前n項(xiàng)和Tn取得最小值﹣1
【解析】(1)由已知可得:
=﹣n+c,即Sn=﹣n2+cn,再利用遞推關(guān)系即可得出.(2)bn=a
=a﹣2n+5=4n﹣5.可知:n=1時(shí),b1=﹣1<0;n≥2時(shí),bn>0.即可得出.
.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐OO1的體積為
π.設(shè)它的底面半徑為x,側(cè)面積為S.
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)圓錐底面半徑x為多少時(shí),圓錐的側(cè)面積最小?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,已知拋物線
:
,拋物線
的準(zhǔn)線與
交于點(diǎn)
.
(1)過
作曲線
的切線,設(shè)切點(diǎn)為
,
,證明:以
為直徑的圓經(jīng)過點(diǎn)
;
(2)過點(diǎn)
作互相垂直的兩條直線
、
,
與曲線
交于
、
兩點(diǎn),
與曲線
交于
、
兩點(diǎn),線段
,
的中點(diǎn)分別為
、
,試討論直線
是否過定點(diǎn)?若過,求出定點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=
,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣
處的切線方程是y=
.
(1)若求a,b的值,并證明:當(dāng)x∈(﹣∞,2]時(shí),g(x)的圖象C上任意一點(diǎn)都在切線y=
上或在其下方;
(2)求證:當(dāng)x∈(﹣∞,2]時(shí),f(x)≥g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
.
(1)當(dāng)q=1時(shí),求f(x)在[﹣1,9]上的值域;
(2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間
,若函數(shù)
同時(shí)滿足:①
在
上是單調(diào)函數(shù);②函數(shù)
,
的值域是
,則稱區(qū)間
為函數(shù)
的“保值”區(qū)間.
(1)求函數(shù)
的所有“保值”區(qū)間.
(2)函數(shù)
是否存在“保值”區(qū)間?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出的命題中:
(1)已知函數(shù)
,則
;
(2)“
”是“直線
與直線
互相垂直”的必要不充分條件;
(3)已知隨機(jī)變量
服從正態(tài)分布
,且
,則
;
(4)已知圓
,圓
,則這兩個(gè)圓恰有兩條公切線.
其中真命題的個(gè)數(shù)為
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,若對任意的正實(shí)數(shù)
,總存在
,使得
,則實(shí)數(shù)
的取值范圍為_________
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com